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Abstract

I investigate experimentally and theoretically the application of control techniques in

systems that display temporal instabilities, including chaos, on very short timescales.

My study includes two distinct systems: a fast chaotic electronic circuit called the

diode resonator, and a compound-cavity semiconductor laser system that exhibits

an instability called low-frequency fluctuations. Control of fast unstable systems

presents several experimental challenges. It is also a topic of broad interest, since

it requires the development of new control techniques, and addresses technologically

important devices such as the semiconductor laser.

The diode resonator is a well-understood system, and when modified for 10 MHz

operation serves as a good testbed for the application of novel control techniques.

I develop a new high-speed time-delay feedback control technique that is based on

the comparison of the present value of a system variable with a series of its past

values. The principles of operation of this technique are studied in both time and

frequency domains, as well as possible methods for its implementation. I develop a

detailed analog electronic implementation that addresses the experimental needs of

rapid processing and faithful reproduction of the feedback signal. This control sys-

tem successfully stabilizes unstable periodic orbits in the diode resonator, the fastest

experimental instability controlled to date. This technique also increases significantly

the regions of parameter space in which control is effective, in comparison with pre-

vious methods. The improvement is gained by incorporating more information from

further in the system's past.

I study the dynamics of the external cavity semiconductor laser system in the

regime where low-frequency fluctuations occur, seeking to improve our understand-

ing of the system before attempting to control its behavior. This system is not com-
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pletely understood, as it exhibits extremely complex, high-speed, potentially infinite-

dimensional dynamics in which spontaneous emission noise plays an important part.

The dominant feature of the instability is the probabilistic occurrence of spontan-

teous, rapid dropouts in the laser power that occur on the nanosecond time scale,

although much faster picosecond dynamics are also present in the system. I per-

form new measurements of the probability distributions for the time between power

dropouts, showing that the data can be modeled approximately as a first-passage

time problem. However, the simple theory does not capture accurately my experi-

mental results under certain circumstances; I suggest possible explanations for the

discrepancies.

I apply open-loop and closed-loop control perturbations to the laser system in

the form of perturbations to the drive current, in an attempt to regulate or stabilize

the complex dynamics. I entrain the power dropouts using a 19 MHz sinusoidal

modulation, such that the power dropouts occur periodically rather than irregularly,

thereby eliminating much of the associated low-frequency noise. In addition, higher

frequency modulation (hundreds of MHz) can produce multiple effects, inducing new

dynamics in certain cases yet doing nothing in others. Finally, I study a closed-loop

feedback technique, finding that it changes the shape of the power droputs but does

not suppress them, and I consider means of improving the feedback's effectiveness.

v
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Chapter 1

Introduction

1.1 Nonlinear dynamics and predictability

Dynamics is an old and venerable field of physics, with its origins in Newton's dis-

covery of differential equations and his solution for the motion of two bodies under

mutual gravitational attraction. Dynamics, most broadly, concerns the behavior of

systems as they evolve in time. Today, the multidisciplinary field known as nonlinear

dynamics contains an extraordinary range of problems, including those from physics,

chemistry, engineering, population ecology, biology, epidemiology, and economics. In

fact, it has been quipped that the breadth of nonlinear dynamics is analogous to that

of nonelephant zoology.

The modern field of nonlinear dynamics has grown from the insightful work of

Poincar6 in the late 1800s. He was aware that certain apparently simple problems

could not be solved analytically, such as the three-body problem. So he instead

developed new geometric methods to address dynamics problems from the standpoint

of stability, rather than seeking precise analytical solutions valid for all time.

Poincar6 also foresaw the possibility of sensitive dependence on initial conditions,

a hallmark of deterministic chaos. Chaotic systems display unpredictable long-term

aperiodic behavior that depends critically on its initial state. Unpredictable behavior

might be expected if a system is driven by random processes, yet the dynamics of

chaotic systems are governed by deterministic laws. Poincar6 described this paradox-

ical situation in The Foundation of Science:

If we could know exactly the laws of nature and the situation of the
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universe at the initial instant, we should be able to predict exactly the

situation of this same universe at a subsequent instant. But even when

the natural laws have no further secret for us, we could know the initial

situation only approximately. If that permits us to foresee the subsequent

situation with the same degree of approximation, this is all we require, we

say the phenomenon has been predicted, that it is ruled by laws. But

this is not always the case; it may happen that slight differences in the

initial conditions produce very great differences in the final phenomena;

a slight error in the former would make an enormous error in the latter.

Prediction becomes impossible, and we have the fortuitous phenomenon

[1].

In 1963, after the dawn of the computer, Lorenz accidentally rediscovered this

important feature when he numerically integrated equations for a greatly simplified

model of convection in the atmosphere [2]. He also found, however, that there was

a deep structure lurking beneath the unpredictable dynamics, that the trajectories

were not truly random, despite their unpredictability. Lorenz visualized his system

in phase space, a geometric construct in which the coordinate axes represent the

dynamical variables needed to specify the instantaneous state of the system, and

found the chaotic trajectories fell onto an "infinite complex of surfaces," a fractal

object we now call a strange attractor.

The Lorenz system serves as a useful instructional example to illustrate the con-

cepts of phase space and sensitive dependence on initial conditions. Figure 1.1 shows

projections in phase space of the Lorenz attractor, with only two variables per graph

for ease of visualization. The dynamical variables of the system form the axes of the
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Figure 1.1: Phase space projections of the chaotic Lorenz attractor. The single
trajectory shown is complex and aperiodic.

graphs, and their evolution is described by

E = -K(E-v), (1.1)

iv = Ew - v,

wb = -b(w + Ev - r).

This form of the equations actually represents a laser system, but is equivalent to

Lorenz's convection model equations [3]; E, v, and w represent a normalized electric

field, polarization, and population inversion, respectively. I use normalized pump

(r = 40) and decay (K = 4, b = 0.4) parameters to generate the single phase-space

trajectory (a record of the time evolution of the dynamical variables) shown in Fig.

1.1. To generate it I select an arbitrary initial condition, numerically integrate for a

period of time to eliminate transients, and then record the trajectory from t = 100

to 375. Note that the trajectory is complex and aperiodic, but is not random (if it

were random, the trajectory would fill phase space [4]).

The same Lorenz system can be used to illustrate sensitive dependence on initial
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Figure 1.2: Sensitive dependence on initial conditions on the chaotic Lorenz attrac-
tor. The chaotic dynamics cause rapid decorrelation of a cluster of closely spaced
initial conditions.

conditions, as shown by the sequence of graphs in Figure 1.2. To generate this figure

I choose a point on the attractor from the trajectory of Figure 1.1 for an initial

condition, and then define a cluster of 8000 additional points located no more than

0.01 in any direction from the central point. The location of this cluster is indicated

by the arrow in Fig. 1.2a. I then use these points as initial conditions for the

Lorenz equations, and the subsequent plots show their corresponding positions after

increasing periods of time. The dot is stretched and folded (1.2b) and quickly fills

the attractor (1.2c), losing all correlation with nearby initial states.

The sequence of graphs in Fig. 1.2 demonstrates that having a good model does

not result in the ability to predict the behavior of the system when the system is

chaotic. However, it is exactly this predictive capability that the scientific commu-

nity has historically sought from its models of the natural world. Although chaotic

systems are beautiful and interesting in their own right to nonlinear dynamicists, their

inherent unpredictability has also naturally led to the development of techniques to

alter their behavior using perturbations to the system, forcing it to be stable or
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regular. This is the study of control, and it is a growing field within the nonlinear

dynamics community. Although control theory is new to this community, it has been

and continues to be an active area of research in applied mathematics and engineer-

ing [5, 6]. There is a vast, well-developed literature on the subject, and this wealth

of expertise has fueled the efforts of nonlinear dynamicists. However, these control

techniques have been adapted for chaotic systems only recently, perhaps because it

seemed so unlikely that they would work. As Freeman Dyson said in 1985,

A chaotic motion is generally neither predictable nor controllable. It

is unpredictable because a small disturbance will produce exponentially

growing perturbation of the motion. It is uncontrollable because small

disturbances lead only to other chaotic motions and not to any stable and

predictable alternative [7].

This viewpoint changed in 1990 with the publication of the seminal paper Con-

trolling Chaos by Ott, Grebogi, and Yorke (OGY) [8]. They demonstrated that a

chaotic system can be stabilized using only small, carefully chosen perturbations by

taking advantage of the fact that such systems have unstable solutions called unsta-

ble periodic orbits (UPO's) that have special characteristics. If the system is placed

precisely on any one of the UPO's, it will stay there indefinitely in the absence of

noise. However, the slightest perturbation will drive the dynamics off the orbit since

it is unstable. As an analogy, consider a marble rolling along the ridge of a saddle:

it will oscillate back and forth along the ridge indefinitely, but any disturbance from

this trajectory, no matter how small, will make the marble fall off the saddle.

To illustrate, I plot two UPO's of the chaotic Lorenz system in Fig. 1.3, where

the chaotic attractor is shown for reference in graph (a). I generate the plot of each

orbit by starting the system from initial conditions that are essentially on the UPO
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Figure 1.3: Unstable periodic orbits of the Lorenz attractor. Graphs (b) and (c)
are two of the simplest unstable periodic orbits embedded in the chaotic attractor
shown in graph (a).

and then numerically integrating for at least fifteen cycles around each orbit. The

system follows the orbit for the entire time, despite the instability of the UPO. This

demonstrates that a system placed very close to an UPO will remain there for a

significant period of time, before noise and the orbit's natural instability ultimately

drive it away. There are an infinite number of UPO's embedded in a given chaotic

attractor [9].

It is possible to stabilize these UPO's using only small perturbations. In simple

terms, the outline of the procedure is as follows. The unperturbed system will even-

tually come sufficiently close to an UPO to remain nearby for a short period of time,

since chaotic systems are ergodic. Small perturbations can then be applied to place

the system essentially on the UPO and to counteract the destabilizing effects of noise,

thereby rendering the orbit stable. For example, suppose a chaotic laser system were

near one of the UPO's illustrated in Fig. 1.3. We can measure the laser intensity

to detect if the system begins to diverge from the orbit. If it does, we can apply a

small perturbation to an accessible system parameter (such as the pump parameter)
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in such a way that the system is placed back on the UPO.

Following the OGY concept of stabilizing UPO's, researchers have successfully

stabilized a wide variety of systems, including physical, chemical, and biological sys-

tems [10]. The first experiments were on relatively simple chaotic systems, involving

only temporal instabilities occurring on frequency scales from 10-2 to 10' Hz. Some

current topics in the field now include control and synchronization of systems that

are noisy [11, 12, 13], high dimensional or hyperchaotic [14, 15, 16], display spatio-

temporal instabilities [17, 18, 19], or have instabilities that occur on very fast time

scales [20, 21].

My contribution to this field is primarily in the area of controlling fast systems.

Specifically, I study systems which exhibit only temporal instabilities on very short

time scales. This is an exciting new area; it requires the development of novel control

techniques, addresses technologically important systems such as the semiconductor

laser, and is still relatively unexplored. There are also particular experimental chal-

lenges associated with fast systems. For example, chaotic trajectories rapidly become

uncorrelated with their past behavior, so any control perturbations based on infor-

mation measured from the system must be applied while the information still relates

to the current state of the system. This is quantified as latency, the time tt between

measuring the system and applying feedback based on that measurement. A second

consideration is that it may be difficult to accurately measure the state of the sys-

tem at discrete times, making some control protocols unworkable such as map-based

algorithms.

1.2 Overview of thesis

This dissertation documents my study of controlling instabilities and chaos in fast

nonlinear systems. It is organized in eight chapters, covering two major experimental
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systems. Chapter 2 is pedagogical in nature, introducing important concepts needed

to understand the experiments. Chapters 3 and 4 present my work on a new feedback

technique and its application to a fast chaotic electrical circuit. Chapters 5 through

7 describe my study of the characterization and control of an external cavity semi-

conductor laser. I conclude in Chapter 8 by reviewing the major results obtained and

considering further work to be done.

In Chapter 2 I begin by motivating this work more thoroughly, explaining the

scientific and technological relevance of the problem of control in nonlinear systems,

and fast systems in particular. I then develop the basic concepts needed to understand

this work, particularly those of control and linear stability, and show how these ideas

can be applied in a simple physical example, the pendulum. I also review some of

the research that has preceded my work, including the OGY technique for controlling

unstable periodic orbits [22] and Pyragas's time-delay feedback protocol [23].

Following this introduction, in Chapter 3 I begin a thorough study of a new

continuous time-delay feedback technique called "extended time-delay autosynchro-

nization" (ETDAS) [20] that is well-suited for control of UPO's in fast systems. It is a

completely analog technique based on feedback that is proportional to the difference

between the current value of a system variable and an infinite series of past values.

Specifically, the form of ETDAS feedback is

6p(t) = - W (t) - (1 - R) E Rk-l (t - kr) , (1.2)
k=1

where 6p(t) represents the continuous adjustment of an accessible system parameter

p about a nominal value, represents a measured quantity from the system, R deter-

mines the relative weight of information from past cycles, - is the period of the UPO

to be stabilized, and 7 is the feedback gain. One section of this chapter is intended to

develop our understanding of the technique using time- and frequency-domain analy-
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Figure 1.4: The diode resonator.

ses. A subsequent section presents methods for implementing ETDAS, including an

all-optical version which holds promise for controlling fast optical systems such as

the semiconductor laser. The last section of Chapter 3 presents a detailed electronic

implementation of ETDAS, in which I explore some practical issues of developing a

feedback system that faithfully reproduces the form of Eq. 1.2. I apply this electronic

implementation of ETDAS control in a chaotic circuit, and the results are described

in Chapter 4.

I choose the diode resonator [24] as the experimental chaotic system on which

to test the efficacy and operation of ETDAS, because it displays a wide range of

nonlinear behaviors, is easy to build and customize, and is well-characterized on slow

time scales [24]-[31]. As shown schematically in Figure 1.4, it consists of a rectifier

diode in series with an inductor L and a resistor R, all driven by a leveled sinusoidal

voltage V at a frequency of 10.1 MHz (this experiment represents the fastest in-

stability controlled by feedback to date [21, 32]). I operate this circuit in a regime

for which it displays a period-doubling route to chaos. I briefly describe the circuit

system in Chapter 4 (more detail is given in Appendix A), and explain my data
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acquisition methods. I enumerate the criteria for successful control and demonstrate

that ETDAS is significantly more effective than previous time-delay feedback pro-

tocols. These results are compared with numerical and theoretical predictions, with

good agreement. This study also demonstrates the importance of latency, the time

tj between measuring the system and applying feedback based on that measurement,

showing that control becomes impossible when te becomes too large. I conclude my

work on control of the diode resonator system by investigating the transient behavior

and dynamics of the system outside the domain of control, shedding light on the

mechanisms by which control may be lost.

In Chapter 5 I introduce and characterize my second experimental system, the

unstable external cavity semiconductor laser system. Its dynamics are fast and highly

complex, and thus careful characterization is a necessary step before attempting con-

trol. This system has been widely studied, both because of the basic scientific interest

in the semiconductor laser and because instabilities can degrade the performance of

the laser in practical situations (see review articles Refs. [33, 34]). In addition, these

instabilities occur on fast time scales; typical relaxation frequencies in laser diodes

have been measured to be a few GHz [35]. Thus, semiconductor laser instabilities

provide great motivation to devise techniques for control of fast systems.

The origin of instabilities in this system is optical feedback due to weak or mod-

erate reflections from a partial reflector such as an optical disc or a junction in fiber-

optic communication lines. Such a system is shown schematically in Fig. 1.5. The

output beam from the solitary laser is collimated and directed into a cavity of length

L, it strikes a partially reflecting mirror R, and the reflected portion of the incident

beam is reinjected back into the solitary laser. The Lang-Kobayashi equations [36]

describe the time evolution of the complex field variable E and the carrier density N
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Figure 1.5: External cavity semiconductor laser. A portion of the emitted field is
reflected back into the solitary laser after traversing an external cavity of length L.

in this system as

dE = (1+ i)GN(N-Nth)E+ -- eE(t-r) (1.3)dW 2 7in'

dN N [12
d- = J--- - + G N (N - Nt) JIEI2 .

One important feature of these equations is the delay term E (t - r) representing the

reinjected field. This term causes the otherwise simple system to become infinite-

dimensional, and is the source of the instabilities. Chapter 5 will include a discussion

of the Lang-Kobayashi equations in greater detail, and a detailed derivation is given

in Appendix B.

Several types of instabilities may arise from the injection of the delayed field; the

particular manifestation depends on the length of the cavity and the strength of the

optical feedback. The instability I study is "low-frequency fluctuations" (LFF), also

known as "power dropout events," which occurs for the case of a long cavity with weak

to moderate levels of optical feedback. Its highly complex dynamics occur on a very

wide range of timescales, from milliseconds to picoseconds, and its dominant feature is

spontaneous, rapid decreases in the laser intensity. It has created much interest since

its discovery by Risch and Voumard in 1977 [37], yet questions remain regarding the
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physical mechanism of LFF despite two decades of study. For example, it is unclear

to what extent the dropouts are caused by quantum fluctuations or by deterministic

chaos [38]. Only recently has it been predicted and experimentally confirmed that

picosecond pulse dynamics are hidden beneath the slower, nanosecond-scale dropouts

[39, 40]. I conclude Chapter 5 by extending these theoretical studies to a first-passage

time theory to predict the distribution of interspike intervals (the time between power

dropouts), and compare experimental data with these predictions. Details of the

first-passage time problem are given in Appendix C.

Chapter 6 describes my first efforts to stabilize this laser system, using open-loop

control in the form of a sinusoidal perturbation added to the drive current. Unlike

closed-loop feedback schemes such as ETDAS, open-loop control does not suffer from

problems with latency and therefore is a natural technique to choose, given that

the dynamics of the LFF instability are known to be extremely fast (Section 2.2.1

describes the differences between open- and closed-loop control in greater detail). In

addition, this approach has had success in previous laser studies [41]-[44] and is easy

to implement. In Chapter 6 I demonstrate that the LFF power dropouts can be

entrained with a comparatively slow (- 20 MHz) modulation in 1:1 and 1:2 ratios,

such that one dropout occurs every (or every other) drive cycle. When the frequency

of the modulation is higher (hundreds of MHz), I show that the interspike intervals

occur preferentially at times that are multiples of the drive period, except when

the frequency corresponds to a harmonic of the external cavity. These results are

elucidated by numerical simulations.

After this study of open-loop control, Chapter 7 continues the investigation of the

laser with the application of a true closed-loop feedback signal to attempt stabilization

of an unstable steady state of the system. The control protocol is quite simple, and

feeds back only the time-varying component from a measurement of the system.
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Specifically, I generate the feedback by detecting the laser intensity, converting it to

a voltage, and applying it to the drive current after passing it through a high-pass

filter. A similar feedback protocol has been successful in stabilizing an electronic

circuit [45], and is actually a limiting case of the ETDAS method discussed in Chapter

3. I find that the feedback control changes the shape of individual power dropouts

and changes the distribution of interspike intervals, but is unsuccessful at stabilizing

an unstable steady state of the system.

The high-speed, high-dimensional dynamics of LFF make feedback control in

this system challenging. There is more work to be done to control this system;

we and other groups have proposed all-optical control techniques [32, 46, 47] for

control of UPO's that may yet be fruitful in such circumstances. I consider possible

future efforts that build on these experiments in Chapter 8, my Conclusion, as I

review the major results of this work. There are three appendices following the

conclusion. Appendix A contains details of the diode resonator model, including how

the parameters that represent my circuit are determined. Appendix B contains the

derivation of the Lang-Kobayashi equations, and Appendix C describes the details of

the first-passage time theory.
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Chapter 2

Fundamentals of nonlinear dynamics and
control

This chapter is intended to motivate the importance of studying control in unstable

nonlinear systems, and to introduce the tools and concepts needed to understand

the results of my investigations. I explain the relevance of this work from the points

of view of both fundamental inquiry as well as technological benefit. I review the

concepts of control and linear stability, illustrating these points by stabilizing the un-

stable steady state of a damped pendulum system. Following this example I discuss

various feedback control methods and review the development of control of unstable

periodic orbits in fast chaotic systems. This review includes the OGY technique and

Pyragas' technique, leading to our method of "extended time delay autosynchroniza-

tion" which is an extension of Pyragas' scheme.

2.1 Motivation

Control systems are all around us, both natural and man-made. For example, the

human body has many regulatory systems, such as elevating the heart rate in response

to danger and maintaining a constant body temperature. Control mechanisms are

also pervasive in technology, ranging from thermostats and engines to electronics and

guidance systems. Knowledge of control is therefore necessary both to understand the

functioning of natural systems, as well as to design new technological applications.

Control theory has a long history of mathematical analysis and engineering appli-

cation. Modern control theory remains a very active field, with current topics includ-

ing optimal control [48] to minimize the "cost" of the controller, adaptive [49, 50] and
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robust control [51] in systems where the model or the controller may be imperfect,

stochastic control [52], and control of systems with "aftereffect" in which the current

behavior is influenced by previous history [53].

Controlling nonlinear dynamics is a particularly important topic because of the

overwhelming abundance of systems that display nonlinear and complex behavior.

The task is complicated because the dynamics of such systems are challenging to

accurately model, understand, and predict. Nonlinear systems near to equilibrium

can be described approximately by more tractable linear differential equations, but

this severely restricts the regime in which the model is useful. Such simplified models

generally give little insight into complex and interesting far-from-equlibrium dynam-

ics such as chaos and turbulence. Furthermore, many analytical techniques that are

useful for linear problems (e.g. Laplace transforms, Fourier decomposition) gener-

ally cannot be applied if the problem is nonlinear. Finally, the dynamical essence of

many systems simply cannot be captured with a linear model, since nonlinear terms

necessarily are present in systems for which various elements cooperate, compete,

interfere, or otherwise interact.

Additional mathematical complexity is introduced when the system incorporates

time delays. The study of delay-differential equations is itself currently an active area

of research [54, 55], and it has been shown that time-delay systems have analogies

with spatially extended systems [56]. Furthermore, it has been recognized that many

natural systems involve time-delays. As examples, some predator-prey population

models incorporate a lag between the moment a prey is killed and the earliest time

the predator population may increase as a result [57], and a model for controlling

blood-sugar levels accounts for the time needed to produce insulin [58]. There is an

emphasis on time-delay systems in this thesis; the external cavity generates a delay

in the laser system, and the "extended time-delay autosynchronization" feedback
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technique relies on information from the past.

In this context, the study of control provides an unique tool to develop our un-

derstanding of such systems. We must carefully model a system to design a good

control protocol, and the response of the system to control perturbations can in turn

probe the model's validity. In a different vein, a control algorithm that is successful

at stabilizing unstable periodic orbits or unstable steady states provides a simple

empirical method to easily find those states and investigate the dynamical structure

of the system.

Beyond the basic scientific value present in studying control of instabilities and

chaos, many dynamical systems in applications rely on smooth and predictable be-

havior for optimum performance. Examples abound in lasers, circuits, aerodynamics,

and fluids, to name a few. My emphasis on fast dynamical systems in this thesis is

driven by the technological importance of the semiconductor laser, which can display

instabilities with GHz frequencies. These instabilities lead to diminished performance

of the laser in such applications as fiber-optic communications or CD players. As a

more dramatic example, chaotic dynamics can lead to catastrophic failure in biolog-

ical systems such as the heart, in which regular beating is crucial and the onset of

irregular cardiac behavior leads to fibrillation and death of the organism.

In such examples, it is easy to understand why chaos traditionally has been re-

garded as something to be avoided or eliminated. However, in recent years there

has been a growing realization that controllable chaos itself could be put to use. An

entire chaotic circuit has been placed on a single integrated circuit, its large number

of UPO's providing a rich and flexible signal source [59]. Chaos also has applications

for secure communications [60, 61], since information can be masked in a wideband

chaotic spectrum. This application relies on synchronization of chaos [62], a field

intimately related to control. Finally, it is desirable to maintain chaotic dynam-
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ics in some situations, rather than stabilize them. This process, sometimes called

"anti-control," may play a role in preventing epileptic seizures [63].

2.2 Fundamentals of control

This central issue of this thesis is the problem of control in systems that exhibit

unstable dynamics. One key feature of such systems is the presence of unstable states,

which allows particular types of control schemes to be applied. I use these control

techniques in my research to stabilize or regulate unstable states such as unstable

fixed points and unstable periodic orbits by means of perturbations to accessible

parameters of the system [64], although one can in principle induce any kind of

behavior using an appropriate controller. It is instructive to review these concepts

of control and instability to aid in the understanding of the experiments I discuss

in later chapters. I use the damped pendulum as an example to help make these

concepts more clear.

2.2.1 Open-loop vs. closed-loop control

Techniques for controlling unstable states in nonlinear systems using small pertur-

bations can be divided into two general categories: feedback and nonfeedback ap-

proaches. Both are used in this thesis, so it is important to understand their main

features and differences. I note that these two methods can be applied individually or

in combination for a given system. Figure 2.1 illustrates the generic building blocks

needed for the two types. I consider the applicability of both methods to systems

with unstable states (although either can be applied to systems which do not exhibit

chaos or dynamical instabilities).

The open-loop (nonfeedback) scheme is shown in Figure 2.1a. The control pertur-

bation is generated and applied to the system without regard for the current state of
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Figure 2.1: Block diagram illustrating open-loop (a) and closed-loop (b) control.

the system. This is accomplished by adjusting an accessible system parameter about

its nominal value by a weak periodic signal, usually in the form of a continuous sinu-

soidal modulation. An orbit is entrained when such a scheme [65, 66] is successful,

whereby the system is forced into an orbit similar, but not identical, to an unstable

state of the unperturbed system. Open-loop schemes have the advantage of being

comparatively easy to implement, as they do not require real-time measurement of

the state of the system and processing of a feedback signal. Latency is also not a

consideration in open-loop methods since the perturbation is predetermined and is

applied regardless of the state of the system. Unfortunately, nonfeedback controls

are generally less flexible and they fail in many cases to entrain the orbit (success or

failure is highly dependent on the specific form of the dynamical system [67]).

In comparison, closed-loop feedback control techniques have the capability to sta-

bilize true unstable states of the system. Figure 2.1b illustrates a feedback system,
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consisting of the unstable system that is to be controlled, a device that senses the

current dynamical state of the system, a processor to generate an appropriate feed-

back signal, and an actuator that adjusts an accessible system parameter. Feedback

control requires accurate sensing of the system and rapid real-time generation of

the feedback signal. Such schemes are often more complicated to implement than

open-loop methods, but can still be reasonably simple in certain implementations.

Researchers have devised a variety of algorithms for generating the specific form of

the feedback signal. One important feature common to all the feedback schemes I

consider is that the feedback becomes very small (comparable to the noise level in

the system) when the control is successful, indicating that an unstable state of the

unperturbed system has been stabilized.

2.2.2 Feedback control in a simple system

Keeping the general ideas of control in mind, I will now consider the specific case of

how one can stabilize an unstable steady state using feedback control (note that the

basic concepts presented here can be generalized and applied to stabilizing unstable

periodic orbits as well). The idea is simple: add feedback to a system in such a way

that an unstable state becomes stable.

Before examining the pendulum example, we must briefly recall the basic math-

ematical description of linear stability. Consider a general system described by two

coupled first-order differential equations,

= f(x,y), (2.1)

S= g(x,y).

We first must locate the fixed points to determine their stability properties. The

fixed points of the system, denoted by (x*, y*), are determined by the conditions

f(x*,y*) = g(x*,y*) = 0.
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We are concerned with the local dynamics about a fixed point, and therefore we

linearize the system by defining

x = x*+6x, (2.2)

y = y*+by.

Explicitly adding a control term, we now find that the dynamics of a small pertur-

bation about the fixed point is given by

= e ) . ) (2.3)
S qby(x*,y*)

= (J+yM) (b6y)
where J is the Jacobian matrix of the uncontrolled system evaluated at the fixed point

(x*, y*), and -yM introduces the control. Note that we have only retained terms that

are linear in the small quantities x and by.

We can determine the stability of this system about the fixed point by analyzing

Eq. 2.3 using standard linear algebra techniques [68]. The fixed point will be linearly

stable if all the eigenvalues A of J+-yM have negative real parts; if not, it will be un-

stable. We determine the eigenvalues and eigenvectors by seeking solutions of Eq. 2.3

of the form e 'tv, corresponding to exponential growth or decay along the eigenvector

v. Substituting this form into Eq. 2.3 we get the usual eigenvalue equation

(J+YM) .v = Av, (2.4)

and solve its characteristic equation det(J+-yM - Al) = 0 to determine the values of

A.

2.2.3 Stabilizing the damped pendulum

We are now prepared to apply a similar analysis in a physical example. I use the

damped pendulum as an example because it is a particularly simple system. It does

20



0=0
0 0

L

(a) (b) (c)

Figure 2.2: The damped pendulum (a) and its stable (b) and unstable (c) steady
states.

not exhibit chaos, nor does it possess unstable periodic orbits. It merely has two

steady states, one of which is unstable. Through illustration of control in such an

uncomplicated case, we may better understand how similar concepts apply in more

complex situations.

Consider the typical pendulum illustrated in Fig. 2.2a. It consists of a bob of

mass m held a distance L from a pivot point by a rigid massless rod, subject to a

uniform gravitational acceleration g. The angle 0 of the pendulum is measured from

the dashed vertical line, with 0 = 0 for the case with the bob directly below the pivot

point. We also assume there is some frictional damping in the system.

This system has two steady states, shown in Figs. 2.2b and 2.2c. We intuitively

expect that the pendulum will end up at rest in the downward position (2.2b) as
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long as there is friction present in the system. This is an example of a stable steady

state. It is a steady state because if we place the system at rest in that position, it

will remain there. It is stable because the pendulum will return to that state even if

we nudge the bob slightly away from 0 = 0. The inverted position (2.2c), however,

is an unstable steady state (USS). It still meets the criterion to be a steady state: if

we place the system at rest exactly at 0 = 7r, it will remain there. In contrast with

the stable steady state, however, the pendulum will rapidly fall away from the USS

in response to the slightest disturbance. This USS is the state we will stabilize using

control.

To analyze the system mathematically, consider the usual equation for the damped

pendulum,
d20 BdO g.
dt-2- +  dt +  sin =0, (2.5)
dt 2  dt T

where B is a positive-valued damping coefficient and the other quantities are as

defined above. To remove some of the constants, we can express the above equations

in dimensionless form by defining the frequency Q = V1L and a dimensionless time

r = ft. If we express time derivatives as 9 = dO/d7" and rescale b = QB, we can

rewrite the pendulum equation as

+ b6 + sin9 = 0, (2.6)

which we can express as a set of two first-order differential equations,

O = w, (2.7)

w = -bw-sin0.

We can determine the location of the fixed points (9*, w*) by setting the time

derivatives in Eq. 2.7 equal to zero. This leads to the requirements that these steady

states have w* = 0 and 0* = kir where k is an integer. Since 0 is on a circle, all the
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9* with even values of k correspond to the stable state, and all the odd values of k

correspond to the unstable inverted position.

How could we implement feedback control to stabilize the unstable steady state?

One option is to use a simple proportional feedback algorithm, that is, the feedback

signal could be defined as F(O) = -y (0 - 0*), proportional to the difference between

the actual angle 0 of pendulum and the angle 9* corresponding to the steady state,

multiplied by a gain factor -y (with appropriate units). To implement this feedback, we

could detect the angle by attaching a potentiometer to the pivot point and measuring

the resistance, and we could apply the feedback to the system as a torque to the pivot

point. In simple terms, the feedback signal causes the application of a torque to the

pivot if the pendulum's position deviates from the steady state, attempting to restore

the position of the pendulum to the USS. The greater the deviation, the greater the

restoring torque will be. When the system is on the USS, the feedback vanishes as

required, because we do not wish to destabilize the pendulum with an unnecessary

perturbation if it is on the USS.

We can now calculate the stability of the USS under feedback control. The equa-

tion for the pendulum including feedback is

+ bO + sin9 = F (0), (2.8)

leading to

9 = w, (2.9)

c = -bw-sinO+y(9-0*).

From this, the linearized system now can be written in the form of Eq. 2.3 as
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Figure 2.3: Linearized dynamics of the damped pendulum. The graphs show the
trajectory without control (a) and when control is added (b), starting from the same
initial conditions near the fixed point at (0,0).
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The characteristic equation at the unstable fixed point (7r, 0) is A2 + bA - (1 + 'y) 0.

Solving this we find the values of the eigenvalues are

A b b 2 +4(1+y) (2.11)2

We can see that one eigenvalue will always have a positive real part in the absence

of control (-y = 0), confirming that this fixed point is indeed unstable. However, it is

possible to force both eigenvalues to have negative real parts by a judicious selection

of the feedback gain -y, thereby stabilizing the previously unstable fixed point. The

specific condition is that -y < -1. If -y is sufficiently large and negative the eigenvalues

will have an imaginary part, but this only indicates that the system will oscillate as

it decays to the stabilized state.
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Figure 2.3 illustrates the dynamics of the system in phase space when its initial

conditions place it near the USS. The initial conditions are 69 = 0.01 and 6w = -0.01

(the point indicated by a dot in the diagram), and the damping parameter is b = 0.2

for both the uncontrolled (2.3a) and controlled (2.3b) cases. The dotted lines with

arrows indicate the location and direction of the stable and unstable manifolds of the

uncontrolled system. In the absence of control (-y = 0), the system approaches the

fixed point along the stable direction, but then rapidly falls away along the unstable

direction. In Fig. 2.3b, however, the introduction of feedback (-y = -1.2) stabilizes

the fixed point, and the system spirals inward from the same initial conditions.

2.3 The Ott, Grebogi, and Yorke concept

The pendulum example shows that it is possible to stabilize an equilibrium point in

a nonlinear system by means of a feedback controller. This concept is well known in

control theory [69, 70, 71] and is hardly revolutionary. The idea of controlling UPO's

in a chaotic system, however, is credited to Ott, Grebogi, and Yorke, as published in

their 1990 paper [8]. They realized that an UPO could be stabilized since it too is

an unstable solution of the system. They also pointed out that the system dynamics

must eventually pass near a given UPO since the trajectory in a chaotic system is

ergodic [72], thus allowing linearization techniques to be valid.

In their original conceptualization of the control scheme, OGY suggested the use

of discrete proportional feedback because of its simplicity and the fact that the con-

trol parameters can be determined straightforwardly from experimental observations.

In this particular form of feedback control, the state of the system is sensed and ad-

justments are made to the accessible system parameter as the system passes through

a surface of section. The size of the adjustments is proportional to the difference

between the current and desired states of the system. Following Ref. [22], consider
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a system whose dynamics on a surface of section is governed by the m-dimensional

map

zi+1 = F(zi,p), (2.12)

where zi is its location on the ith piercing of the surface and pi is the value of an

externally accessible control parameter that can be adjusted about a nominal value

p. Feedback control of the desired UPO (characterized by the location z,(p) of its

piercing through the section) is achieved by adjusting the accessible parameter by an

amount

bpi= P,- P= -Yf.- [Zi-Z.(P)] (2.13)

on each piercing of the section when zi is in a small neighborhood of z,(P) [72],

where - is the feedback gain and fi is a m-dimensional unit vector that is directed

along the measurement direction [73]. The location of the unstable fixed-point z, (p)

must be known before control is initiated; it can be determined from experimental

observations of zi in the absence of control. The feedback gain -y and the measurement

direction fi necessary to obtain control is determined from the local linear dynamics

of the system about z,(P) using the standard "pole-placement" technique of modern

control engineering [5, 22]. They are chosen so that the adjustments 6pt force the

system onto the local stable manifold of the fixed point on the next piercing of the

section. Successive iterates then collapse to z,(p). As stated previously, 6pi vanishes

when the system is stabilized; the control then only has to counteract the destabilizing

effects of noise.

Ditto et al. [74] performed the first successful experiment using this technique

by using it to control the dynamics of a chaotic magnetoelastic ribbon. They recon-

structed the map using a time-delay embedding of a time series of a single variable

and found that the discrete feedback control scheme is easy to implement, robust

to noise, and rather insensitive to imprecise knowledge of z,( ) and -y. Soon af-
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ter this success, variants on the control algorithm were developed. Hunt [75] and

Peng, Petrov, and Showalter [76] found that control can be obtained by occasionally

delivering brief perturbations

b= -- [(i - (.(C)]E(T) (2.14)

to the system parameter, where = fi - zi, and e(ri) is a square pulse function

of duration Ti. Carr and Schwartz [77, 78] have considered delays and Ti as control

parameters. Often, -y, fi, C, and Ti are determined empirically by adjusting their

values to obtain controlled behavior. Note again that bpi vanishes when the UPO

is controlled successfully. In the ensuing years, several additional discrete feedback

control schemes that refine the original OGY concept have been devised and applied

to experimental systems with natural frequencies ranging from 10-2 to 105 Hz [10].

2.3.1 Control in fast systems

Scaling these schemes to significantly higher frequencies, such as those encountered

in high-speed electronic or optical systems, for example, is challenging for several

reasons. As mentioned in Chapter 1, one important issue in high-speed feedback

control of chaotic systems is the latency through the control loop, that is, the time

te between the sensing of the state of the system and the application of the control

signal. The latency of the control loop is affected by the propagation speed of the

signals through the components of the loop and the processing time of the feedback

signal. A second important issue is that it is difficult to accurately sample the state

of the system at discrete times in order to compare it with the reference value and

to rapidly adjust the control parameter on a time scale comparable to the response

time of the system.

As noted in Sec. 2.2.1, open-loop control techniques are easily modified for high-

frequency operation since the control signal generated is independent of the state of
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the system, thus eliminating concerns about latency and accurate sensing of the sys-

tem. Alternately, continuous closed-loop schemes also avoid or reduce these problems

and hence may be useful for controlling high-speed chaos. For example, an obvious

extension of the original OGY suggestion for controlling UPO's is to use continuous

adjustment of the accessible system parameter by an amount

6p(t) = -'yfi. [x(t) - x.(t)], (2.15)

where x(t) is the system trajectory, x, (t) is the trajectory of the UPO in m-dimensional

phase space, and -y is a constant feedback gain [23, 79]. This scheme is not amenable

for controlling the dynamics of high-speed systems, however, because it is difficult to

accurately determine, store, and regenerate x, (t).

Several researchers have suggested that unstable steady states can be stabilized

in high-speed chaotic systems using a class of continuous feedback techniques that

do not require rapid switching or sampling, nor do they require a reference signal

corresponding to the desired orbit. The USS's of a laser [80], an electronic circuit [81],

and a model chemical system [82] have been stabilized using continuous adjustment

of the system parameter by an amount

bp(t) = -yfi" [dx(t)/dt], (2.16)

often called derivative control. The feedback gain -y is determined from the local lin-

ear dynamics of the system about the USS using the standard techniques of modern

control engineering, or it can be determined empirically in experiments. As required,

bp(t) vanishes when the system is stabilized to the USS. An advantage of this scheme

is that no explicit knowledge of the USS is required to implement control, unlike

the proportional feedback used in the pendulum example. One disadvantage, how-

ever, is that derivative control tends to overcorrect for high-frequency noise, possibly

destabilizing the system.
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There is an alternate method for stabilizing USS's that is not as susceptible to

high-frequency noise. This technique prescribes the adjustment of the system para-

meter p by 6p(t) where 6p(t) evolves according to

d d (t)dt) = - - -W" 6p(t). (2.17)

This equation is identical in form to that of a single-pole high-pass filter with a

corner frequency wo. This feedback technique has been used to stabilize an USS of an

electronic circuit [45], and is a limiting form of the ETDAS technique given by Eq.

1.2, described in greater detail later in this section. Further detail on this method is

in Chapter 7, in which I apply it to the external cavity semiconductor laser.

Another class of feedback controls are time-delay methods, which take advantage

of the information present in a chaotic signal. As first suggested by Pyragas [23], the

UPO's of a dynamical system can be controlled using continuous feedback designed

to synchronize the current state of the system and a time-delayed version of itself,

with the time delay equal to one period of the desired orbit. Specifically, UPO's of

period T can be stabilized by continuous adjustment of the accessible parameter by

an amount

6p(t) = --y[(t) - (t - -r)], (2.18)

where -y is the feedback gain, (t) = f. x(t), and fi is the measurement direction.

I refer to this method of control as 'time-delay autosynchronization' (TDAS). Note

that as with the other feedback algorithms, 6p(t) vanishes when the system is on

the UPO since 6(t) = 6(t - 7-) for all t. I have experimentally demonstrated TDAS

by controlling a circuit oscillating at 10 MHz [32]. Others have controlled a lower

frequency electronic circuit [83, 84], a fiber laser [85], a glow discharge [86], a magneto-

elastic ribbon [87], and a periodically driven yttrium iron garnet film [88]. In addition,

TDAS has been demonstrated theoretically to be effective for stabilizing the dynamics
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of a tunable semiconductor oscillator [89], neuronal networks [90], lasers [46, 47], and

pattern forming systems [18]. The main drawback to TDAS is that it is not effective

at controlling highly unstable orbits [83].

Recently we [20] introduced a generalization of TDAS that is capable of extending

the domain of effective control significantly [91] and is easy to implement in high-speed

systems. I will thoroughly investigate and characterize this new technique in Chapter

3, and test its effectiveness on a chaotic circuit in Chapter 4. The new technique is

called "extended TDAS," or ETDAS. As stated in Chapter 1, stabilization of UPO's

of period r is achieved by feedback of an error signal that is proportional to the

difference between the value of a state variable and an infinite series of values of

that variable delayed in time by integral multiples of r. Recalling Eq. 1.3, ETDAS

prescribes the continuous adjustment of the accessible system parameter p by

6p(t) - (t) - (1 - R) E Rk-l(t - k-r) , (2.19)
k=1

where 0 < R < 1 regulates the weight of information from the past [92]. This feedback

protocol is superior to TDAS in that highly unstable orbits can be stabilized as R - 1

(the case R = 0 corresponds to TDAS). I emphasize that, for any R, 6p(t) vanishes

when the UPO is stabilized since 6(t - kT) = 6(t) for all t and k, so there is no

power dissipated in the feedback loop whenever ETDAS is successful. Note that no

property of the UPO must be known in advance except its period. In periodically

driven systems, where the period of the orbit is determined from the driving, no

features of the UPO need ever be determined explicitly.

In this chapter I have motivated the study of control in fast nonlinear systems

and reviewed the fundamental concepts of control. I have examined linear stability

and control of the unstable steady state of a pendulum, and introduced a variety of

techniques researchers have used to control both USS's and UPO's. I have emphasized
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practical issues that arise for controlling systems that fluctuate on fast time scales,

and introduced several techniques that are well-suited to address these issues. The

feedback technique that is most important to this thesis is ETDAS, which will be

studied in detail in the next chapter.
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Chapter 3

Extended Time-Delay
Autosynchronization

In this chapter I present a new continuous feedback scheme called "extended time-

delay autosynchronization" (ETDAS) which is well-suited for controlling fast systems.

It is designed to control unstable periodic orbits, but can also be adapted to stabi-

lizing unstable steady states. It can be implemented all-optically, and therefore may

hold promise for stabilizing the very high-speed dynamics of the semiconductor laser

system. To develop an understanding of ETDAS, I first describe its time domain

form and then review a general method for performing a linear stability analysis on

systems under ETDAS control. A frequency domain analysis further elucidates the

function of the control mechanism. I describe a general logical design for ETDAS, and

then show how I have implemented it electronically for control of the diode resonator

circuit. This study also provides an opportunity to explore some practical issues that

may affect the effectiveness of ETDAS, such as designs that minimize latency while

faithfully reproducing the ETDAS feedback form. Successful control results will be

presented in the next chapter.

3.1 Understanding ETDAS

As introduced in Chapters 1 and 2, ETDAS is a feedback control protocol that

is tailored to the demands of stabilizing unstable periodic orbits in fast dynamical

systems. It is easily implemented in a completely analog fashion, thereby eliminating

the need for accurate sampling of the fast system at discrete times. This relative

simplicity also makes it possible to design ETDAS systems with small latencies, the
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Figure 3.1: Evidence of unstable periodic orbits in the chaotic diode resonator.
Three regions of approximately periodic behavior indicate the system is near an
UPO.

time between sensing the state of the system and applying feedback based on that

measurement. Furthermore, it does not require extensive a priori characterization of

the state to be stabilized; all that must be known is the period of the UPO.

This new feedback protocol takes advantage of the dynamics of the system in a

neighborhood of an UPO to effect stabilization. Recall that a chaotic system near

a given UPO will remain in a neighborhood of that orbit for a short time before

falling away to other behaviors, and if the system is placed exactly on an UPO it will

reside there forever (assuming the a noise-free system). Figure 3.1 shows an example

of chaotic oscillations in which the presence of UPO's is clearly evident with the

appearance of nearly periodic oscillations for short intervals (this figure illustrates
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the dynamical evolution of the diode resonator circuit described in the next chapter).

Fig. 3.2 is an abstract illustration that shows some of the quantities used in

ETDAS. The system is initially very close to an UPO, and the measured variable

(t) is nearly periodic. Later, the system begins to diverge from it (the location of

the UPO is indicated by the dotted line). The ETDAS scheme generates feedback

through a continuous comparison of the current state of a system variable (t) with

its past values 6(t - kT) where - is the period of the UPO to be controlled. The

feedback is designed to vanish if the system is on an UPO, that is, if the past values

6(t- kT) are the same as the current value 6(t). However, ETDAS immediately

detects changes and applies negative feedback to the system to compensate if the

system begins to move away from the UPO due to noise or the natural instability of

the orbit. This self-adjusting character may allow ETDAS to maintain control even

if the underlying attractor gradually drifts, making it attractive for use with lasers

in poorly regulated environments, for example [93].

3.1.1 The ETDAS feedback form

Stabilization of UPO's of period r is achieved by feedback of an error signal that is

proportional to the difference between the value of a state variable and an infinite

series of values of that variable delayed in time by integral multiples of r. As in-

troduced in previous chapters, ETDAS prescribes the continuous adjustment of the

system parameter p by

p(t) = -Y [ - (1 - R) ER -l(t - kr), (3.1)

where -y is the feedback gain, and 6(t) = fi . x(t) where x(t) is the state vector and fi

is the measurement direction. The parameter R lies between 0 and 1, and regulates

the "memory" of ETDAS, determining the relative weight given to information from

34



system near UPO TuPO

time

Figure 3.2: Illustration of ETDAS. The system is initially near an UPO, but then
diverges from it. The dots indicate the values of (t) at various times, seperated by
the period r of the UPO.

the past [92]. The case R = 0 reduces to the scheme introduced by Pyragas [23]. As

R -+ 1, however, highly unstable orbits can be stabilized, representing a significant

improvement of the control scheme. The error signal bp(t) vanishes when the UPO

is stabilized since 6(t - k-) = (t) for all t and k, regardless of the value of R chosen.

No property of the UPO must be known in advance except its period. If the system is

regularly driven, this task is simple since the period of the UPO must be an integral

multiple of the drive period.

If the system to be controlled fluctuates on a very short time scale, it may be

impossible to produce a feedback signal that faithfully reproduces the form of Eq.

3.1 due to the latency of the control loop. This problem is minimized with ETDAS

but still may be of importance in very fast systems. Under conditions when the
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latency is significant, the actual adjustment of the system parameter is given by

pactua (t) = 6p(t - t).

3.1.2 Linear stability analysis

Successful use of ETDAS requires appropriate choices for the control parameters 'Y

and R. Although it is often possible to determine suitable values empirically in an

experiment, it is important to have some theoretical guidance. This can be accom-

plished by performing a linear stability analysis of the system in the presence of

ETDAS feedback control for fixed fi and p. Such an analysis can yield important

information, such as identifying the orbits that may be controlled, and the range (if

any) of feedback gain needed to achieve control for a particular R. The continuous

time-delay nature of ETDAS makes this a difficult task. However, Bleich and Soco-

lar [94] have formulated a general method to approach this analysis, which I briefly

review in this section. Bleich [95] gives a thorough description of the details of the

analysis and the numerical procedures needed, as well as results of its application

to several theoretical systems, including the laser Swift-Hohenberg equations for a

semiconductor laser with a single longitudinal mode [96, 97].

The analysis proceeds by considering a system described by

k(t) = f(x(t),t;p), (3.2)

p = P+6pt)

where the ETDAS feedback signal 6p(t) (given by Eq. 3.1) is included as a pertur-

bation to the parameter p. This analysis considers the case where the latency of the

control loop can be ignored (t, = 0).

Following Ref. [94], I consider small perturbations y(t) = x(t) - x.(t) about a

T-periodic orbit x, (t). The dynamics of the perturbations in a neighborhood of the
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orbit are governed by

SIM = J(t) y(t) - -YM(t) [Y(t) - (1 - R) E Rk-ly(t - kr)] (3.3)

where J (x,(t)) O Of/Ox Ix.(t),p is the Jacobian of the uncontrolled system and

M(x.(t)) (Of/Op Ix.(t),f) 0 fi is an m x m dyadic that contains all information

about how the control is applied to the system and how small changes in p affect it.

The general solution to Eq. 3.3 can be decomposed into a sum of periodic functions

(modes) with exponential envelopes. The growth of an exponential envelope in a pe-

riod T is quantified by its Floquet multiplier p which can be found from the modified

eigenvalue equation

Ai'T [expj (J(t) - 1 -/IR M(t)) dt] - AI = 0, (3.4)

where the time-ordered product notation T[... ] represents the operator which ad-

vances y(t) forward in time by an amount equal to r, and 1 is the identity matrix.

In general, the time-ordered product cannot be obtained analytically, although it

can be found using numerical techniques. To simplify our discussion, we denote the

left-hand-side of Eq. 3.4 by g(p-1). Note that g has an infinite number of roots,

corresponding to the infinite number of modes introduced by the time delay.

An UPO is linearly stable under ETDAS control for a given set of parameters

if and only if all the Floquet multipliers lie inside the unit circle in the complex

plane, that is, if IpI < 1 for all p satisfying Eq. 3.4. Equivalently, the system is

stable if and only if g has no roots on the unit disk since g(p- 1 ) has no poles on

the unit disk. The number of roots of g(p-1) on the unit disk can be determined by

counting the number of times g(z) winds around the origin as z traverses the unit

circle. A necessary and sufficient condition for linear stability of the UPO in the

presence of ETDAS feedback control is that this winding number vanish. I note that

an approximate stability analysis of Eq. 3.2 has been undertaken recently [98].
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3.1.3 Frequency domain analysis

While the time-domain stability analysis outlined above gives a complete picture of

ETDAS feedback in a neighborhood of the UPO, a frequency-domain analysis helps

clarify the underlying reasons for its effectiveness in stabilizing highly unstable orbits

as R --+ 1. Specifically, it is instructive to consider the "transfer function" of ETDAS,

which relates the output to the input as a function of frequency. Since the ETDAS

feedback signal given by Eq. 3.1 linearly relates the input signal (t) with the output

signal 6p(t), we can express Sp(f) = -yT(f) (f), where (f) and 6p(f) are the

Fourier amplitudes of the input and output signals, respectively, and T(f) is the

transfer function. From this analysis, the expression for T(f) is

~~1 - exp(i2irfT)(.5
T(f) = 1- Rexp(i2rf) (3.5)

The transfer function "filters" the observed state of the dynamical system, charac-

terized by 6(f), to produce the necessary negative feedback signal.

Figure 3.3 shows the frequency dependence of IT(f)f for R = 0 (TDAS) and

R = 0.65 (ETDAS). One important feature of this figure is the series of notches

in JT(f)l that drop to zero at multiples of the characteristic frequency of the orbit

f, = r - 1. These notches ensure that the feedback vanishes when the system is on

the UPO, because the spectrum 6(f) of the system consists of a series of 3-functions

at multiples of f. when it is on the UPO, and therefore the filter must remove these

frequencies so that 6p(f) = 0. A second important feature of IT(f)j is that the

notches become narrower for larger R, which indicates that the ETDAS feedback is

*more effective in stabilizing UPO's partly because it is more sensitive to frequencies

that could potentially destabilize the UPO. That is, the narrower notches imply

that more feedback is generated for signals with frequency components that differ

only slightly from the desired set. In addition, IT(f)l is more uniform in magnitude
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Figure 3.3: Transfer function of ETDAS. The "notches" at multiples of f. indicate
that no feedback is generated if the system is on the UPO.

between the notches for larger R, so the system is less likely to be destabilized by a

unnecessarily large feedback response at intermediate frequencies.

Note that one could construct other transfer functions possessing notches at mul-

tiples of f, that could also stabilize the dynamics of the UPO. For example, a con-

tinuous version of a map-based technique given by Flake et. al. [99] leads to a

transfer function consisting of a truncated sum of Fourier components. In this case,

I T(f )I from f = 0 to f. appears as a Fourier series approximation of a square wave.

However, Eq. 3.5 is easy to implement experimentally.
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3.2 Implementing ETDAS

3.2.1 General implementation

ETDAS feedback control of UPO's can be implemented straightforwardly using a

variety of techniques, even on fast time-scales. One possible logical design of the

feedback loop is shown schematically in Fig. 3.4. The bold letters are reference

points used in the following description of the signal flow, as well as in the specific

electronic implementation described in Sec. 3.3. I assume in this description that

the components impart negligible propagation delays on the various signals (except,

of course, for the intentional delay r necessary to form the ETDAS feedback signal).

The dynamical variable (t) from the system is converted to a voltage V(t) by a

transducer. The power of this signal is split equally between two different paths (point

A). Half of the signal is directed to one input port (point B) of a voltage subtraction

device and is related to the first term on the right-hand-side of Eq. 3.1; the other

half is directed to one input port (point C) of a voltage addition device forming

part of the group of components (dashed box) generating the delay terms in Eq. 3.1.

The signal in the latter path emerges from the addition device, propagates through

a variable delay line with the delay time set equal to the period T of the desired

UPO (point D), is attenuated by an amount R, and is injected into the second port

(point E) of the addition device where it is combined with the original signal. A

high-impedance buffer senses the voltage signal at the output of the delay line (point

D). The signal emerging from the buffer is attenuated by (1- R) and injected into the

second port (point F) of the voltage subtraction device, representing the second term

on the right-hand-side of Eq. 3.1. The signal emerging from the subtraction device

(point G) is proportional to the ETDAS error signal; it is amplified and injected into

a transducer that adjusts the accessible control parameter by bp(t).
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Figure 3.4: Logical design for an ETDAS system. The signal 6(t) from the dy-
namical system is processed to generate 6p(t). The components in the dashed box
generate the infinite series of time-delay terms using a single delay line.

The ability of ETDAS to be implemented using only analog components makes

this design amenable to high-speed operation, although the unavoidable propagation

delays through components must be thoroughly characterized in any real implemen-

tation for fast systems. As described in Sec. 3.3, small additional time delays must

be added to the feedback system and adjustments must be made to compensate for

the time delays inherent in the components. However, ETDAS need not be imple-

mented in an analog fashion, if the dynamics to be controlled are sufficiently slow.

In this case, all of the operations performed by the components between the input

and output transducers could be accomplished by a digital computer equipped with

analog-to-digital and digital-to-analog converters.
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Figure 3.5: All-optical implementation of ETDAS. The interferometer in the dashed
box creates the time-delay series, with r equal to the roundtrip time of light in the
cavity.

3.2.2 All-optical implementation

One useful feature of ETDAS feedback is the ability to generate the error signal using

an all-optical technique [17, 20, 46, 47]. Specifically, the form of the ETDAS error

signal given by Eq. 3.1 is identical to an equation that describes the reflection of light

from a Fabry-P~rot interferometer [100], where R = r2 corresponds to the weighted

average of the amplitude-reflection-coefficients r of the mirrors, and r corresponds to

the round-trip transit-time of light in the cavity. In one possible scenario, the input

transducer shown in Fig. 3.4 generates a laser beam of field strength Ei,,(t) that is

directed toward an optical attenuator or amplifier (controlling -y) and a Fabry-Prot

interferometer as shown in Fig. 3.5. The field Eref (t) reflected by the interferometer

passes through the attenuator/amplifier and is converted to the ETDAS error signal
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6p(t) by the output transducer. It may be possible to control fast dynamics of optical

systems that generate directly a laser beam, such as semiconductor diode lasers, using

the field generated by the laser as the measured system parameter (t) and as the

accessible system parameter 6p(t); no transducers are required [17, 20, 46, 47].

3.3 Implementation for the diode resonator

3.3.1 Electronic circuit layout

I use an analog-electronic implementation of ETDAS to control the dynamics of

a fast chaotic electronic circuit known as a diode resonator, described in the next

chapter. The circuitry is shown schematically in Fig. 3.6 (component values are

given in Table 3.1). This implementation attempts to mimic as closely as possible

the generic design illustrated in Fig. 3.4. It addresses practical considerations such as

the finite propagation time of the signals through the components, distortion of the

signals, and noise, balanced against the simplicity of the layout, ease of construction,

and price.

The electrical signals propagate through the circuit in a fashion similar to that

described in Sec. 3.2.1 for the generic implementation of ETDAS; points (A-F) in

Fig. 3.6 for the specific implementation correspond to the same points in Fig. 3.4 for

the generic implementation. One crucial goal of the circuit layout shown in Fig. 3.6 is

to ensure both that the difference in propagation time of signals from points A-*G'

and A--+D'---+D--F--+G' is equal to - and the time in the delay loop D-*E--*D'--*D

is also equal to r, in order to faithfully produce the ETDAS error signal. This task is

complicated by the nonzero propagation delays through the electronic components.

In my layout, the measured system parameter V(t) is sensed by a high-impedance

buffer (B1) and the power associated with this signal is split equally between two

different paths (point A). Half of the signal is directed to the input (point B) of
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Component Value
R1 50Q
R2 100Q
R3 715 Q
R4 499 Q
R5 357Q
R6 255Q
R7 150Q
R8 402 Q (590 Q for p-4)
R9 100Q
R10 825 Q (1540 Q for p-4 )
R11 140 Q
R12 324 Q
R13 59 Q
R14 53.6 Q
R15 215 Q
R16 1000 Q
Li 0.33 pH (1.0 pH for p-4)
L2 0.33 ILH (1.0 ILH for p-4)
L3 3.3 IH
C1 0.1 ILF
P1 5 kQ
P2 I kQ

Table 3.1: Component values for electronic implementation of ETDAS.
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an inverting, summing operational amplifier (Al) and the other half is directed to

the input (point C) of a second inverting, summing amplifier (A2) where it is filtered

with predistortion circuitry (Fl). The signal emerging from A2 propagates through a

long, variable delay line (Dl) with a delay time set close to, but less than, the period

- of the desired UPO. It is then inverted and amplified (A) by a fixed amount to

compensate for the average loss of the delay line, passed through a short variable

delay line (D2), attenuated to set the control parameter R, and directed to the input

(point E) of Al where it is filtered with predistortion circuitry (F2). The signal

emerging from the long delay line (point D) is sensed with a noninverting amplifier

(A4), passes through a short variable delay line (D3, point F), and is directed to

the input of the summing amplifier Al where it is attenuated by a factor equal to

(1 - R) by adjusting P1. The signal emerging from Al (point G) is proportional to

the ETDAS error signal; it is directed to additional amplifiers to set the feedback

gain -y and injected into the diode resonator.

3.3.2 Selection of components

I have emphasized that a primary issue in designing the ETDAS circuitry is min-

imizing the control-loop latency tg. The latency must be much less than "-,100 ns

to control the diode resonator, as will be shown experimentally in the next chapter.

In this proof-of-principle investigation of ETDAS, I select commercially available,

inexpensive operational amplifiers and buffers which add very little to te yet are easy

to obtain and incorporate into the design. For our choice of components, te "-10 ns.

Smaller latencies may be possible using custom-built microwave circuitry; I do not

explore this option, mainly due to the greatly increased cost of such an implementa-

tion.

The control-loop latency is governed by the time it takes for the signal to prop-
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agate from the input to the output of the ETDAS circuitry following the path

A-*B---+G, since the portion of the signal at G ideally should be proportional to

the input signal (with no time lag). Propagation delays of the signal along other

paths are not as important because they can be compensated for by using a slightly

shorter coaxial cable (D1). I use the AD9620 unity-gain buffer (Analog Devices [101],

propagation delay < 1 ns, bandwidth 600 MHz) for B1 and the AD9618 amplifier

(Analog Devices, propagation delay _ 3 us, bandwidth 160 MHz) for Al because

they have short propagation delays, are relatively easy to use, and are low cost. In

the parts of the circuit where propagation delays are not as important (A2-A4), I

select the AD811 amplifier (Analog Devices, propagation delay _ 6 ns, bandwidth

140 MHz) because its stability is less sensitive to the precise layout of the compo-

nents. Note that the bandwidth of all components is significantly larger than the

characteristic frequency of the chaotic system (10.1 MHz), thereby minimizing the

distortion of the ETDAS feedback signal. Operational amplifiers and buffers with

similar or better specifications should produce similar results.

Due to the high bandwidth of these devices, I use standard high-frequency analog

electronic techniques. The components are laid out on a home-made, double-sided

printed circuit board in which the signal traces form a transmission line (nominal

impedance 50 Q) and are kept under 2 cm. Also, proper ground planes are maintained

under all components, and PC board mounted SMA jacks are used to transfer the

signals from the board to coaxial cables. The printed circuit boards are fabricated

in the following multi-step process: I create a graphical layout of the traces using a

simple drawing program on a personal computer; the drawing is printed on a 'transfer

film' with a laser printer [102]; the traces are transferred to the clean, bare copper

surface of the board; the plastic backing of the transfer film is removed; the board is

etched using a hot ammonium persulfate solution; holes are drilled for the leads of the
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components; and the components are soldered to the board. The power supply leads

to all operational amplifiers are bypassed with ceramic and tantalum capacitors as

close as possible to the power supply pins, and ferrite beads isolate the power supply

lines between components. The DC offset voltage of the amplifiers is compensated at

the last stage of the circuitry (point G') by adding a DC voltage to the signal from a

filtered, adjustable power supply, as shown in Fig. 6. All signals routed between the

ETDAS and other circuit boards propagate though short 50 Q coaxial cables (type

RG-58/U).

Another critical issue in the implementation of ETDAS feedback is minimizing the

distortion of signals propagating through the coaxial delay line D1, due to frequency-

dependent attenuation and phase shift. Distortion is difficult to avoid for the high-

period UPO's because the delay line is long, and for the case when the feedback

parameter R -* 1 since the signals circulates many times through the delay line. To

minimize the distortion, I use low-loss, semi-rigid 50 Q coaxial cable (1/4" HELIAX

type FSJ1-50A [103]). I find that this delay line gives superior performance in com-

parison to standard coaxial cable (type RG-58/U). The attenuation characteristics

of the HELIAX cable is 0.175 dB/100 ft. at 1 MHz and 1.27 dB/100 ft. at 50 MHz

which should be compared to 0.33 dB/100 ft. at 1 MHz and 3.15 dB/100 ft. at

50 MHz for the RG-58/U cable. Previous implementations of TDAS have used for

the delay line a variable length transmission line [20], electro-optic delay line [85], or

digital first-in-first-out delay device [86].

3.3.3 Adjustment of circuit parameters

The final preparation step for controlling the dynamics of the chaotic system using

ETDAS feedback is to adjust the time delay r and the feedback parameter R. I

note that setting r requires adjusting the propagation time of signals following two
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different paths. Referring again to Fig. 3.6, the difference in time it takes for signals to

propagate from A-*B-*G' and from A-+D--F-+G' must be equal to T. In addition,

the propagation time around the delay loop (D-*E--+D'-*D) must also equal r. Note

that these times include the propagation time through all components: the coaxial

cable, the amplifiers and attenuators, and the signal traces and connectors. The

timing can be achieved straightforwardly using three coaxial delay lines D1-D3. The

long delay line D1 consists of the combination of a HELIAX cable whose propagation

time is close to but less than r, connected to a short coaxial cable (type RG-58/U)

and a constant-impedance adjustable delay line (Hewlett-Packard model 874-LK10L

[104]) for fine and ultra-fine adjustment of D1, respectively. The short variable delay

line D2 consists of another adjustable delay line and coaxial cable (type RG-58/U)

whose length is just long enough to connect the variable delay to the printed circuit

board. Finally D3 is simply a short, fixed coaxial cable (type RG-58/U).

Initial adjustment of the timing is achieved by injecting a weak sinusoidal voltage

whose period is equal to i- at point A. The first step is to adjust the circuitry for

TDAS feedback (R = 0), that is, to set the path difference between A--+B-+G' and

A---D--F--*G' exactly to -. To accomplish this, the circulating loop is temporarily

disabled by disconnecting the attenuator (Kay Elemetrics model 1/839 manual step

attenuator[105]). The length D1 is then set so that the sinusoidal signal at point F

is delayed by one period from the signal at point B. The amplitude of the delayed

signal is adjusted using the variable resistor P1 so that the signal at the output of the

ETDAS circuitry (point G) is minimized; iterating this procedure while monitoring

the signal at G results in precise adjustment of D1. Next, the circulating loop is

reconnected with the attenuator set so that R is small, and the delay D2 and the

variable resistor P1 are adjusted to minimize the signal at G. Sensitive adjustment

of D2 is achieved by decreasing the attenuation (increasing R) and iterating the
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setting of D2 and P1. Adjusting the feedback parameter R to any desired value

is straightforward once the timing of the circuit is achieved. A new value of R is

selected by setting the attenuator and also adjusting the variable resistor P1 which

sets the value of (1 - R) in Eq. 3.1. Typically, the 10.1 MHz sinusoidal input signal

is suppressed at point G by -, 50 dB at 10.1 MHz.

This procedure results in a ETDAS feedback signal V~p(t) = vdeal (t t- i), where

videal (t) is the ideal feedback signal in the absence of control-loop latency. The

latency te includes contributions from the total time lag of the signal as it propagates

from the diode resonator, through the ETDAS circuitry and additional amplifiers

setting the feedback gain -y, and the summing amplifier that injects the feedback

signal into the diode resonator.

3.3.4 Compensating for nonideal circuit behavior

I characterize the quality of the ETDAS circuitry by measuring its frequency-domain

transfer function IT(f) I (recall the ideal shape of IT(f) shown in Fig. 3.3). I measure

IT(f)[ by applying a weak sinusoidal signal (300 mVpp) of frequency f at the input

and measuring the output signal on a 100 MHz oscilloscope. Figure 3.7 shows IT(f)l

for r = 400 ns (corresponding to a fundamental frequency f. = 2.5 MHz) for two

cases, R = 0 (dashed line) and R = 0.65 (solid line). This configuration is used to

stabilize the period-4 UPO of the diode resonator. I adjust the circuit parameters so

that the notch at 10.1 MHz is as close to zero as possible, rather than optimizing at

2.5 MHz because the spectrum of the period-4 orbit has a large peak at 10.1 MHz.

All other notches have a transmission less than 0.047 for R = 0.65 and less than

0.017 for R = 0. The agreement between the observed and predicted behavior is very

good, especially when one considers that the sensitivity of the shape of the notches

on the distortion of the delay line increases as R -* 1.
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Figure 3.7: Experimental ETDAS transfer functions. They are very similar in shape
to the ideal transfer functions in Fig. 6.3, indicating that the circuitry faithfully
reproduces the form of the ETDAS feedback signal.

These high-quality results are only possible when the signals are filtered with

predistortion circuitry (F1 and F2 in Figure 3.6) that attempt to cancel the small

distortion caused by the HELIAX cable. The filters, consisting of two resistors and

an inductor, do not significantly effect the signals at low frequencies but boost their

amplitudes at high frequencies in a fashion opposite to the small frequency dependent

attenuation of the coaxial cable. For comparison, Fig. 3.8 shows IT(f) I with the

predistortion filters (Fl and F2) removed, after I make minor adjustments of the

circuit parameters to optimize the notch at 10.1 MHz. It is seen that the performance
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Figure 3.8: Experimental ETDAS transfer functions without predistortion filters.
Performance of the circuit is severely degraded, as the notches no longer go to zero
and the peak heights are not uniform.

of the device is severely degraded, especially for R = 0.65. 1 note that acceptable

behavior of the ETDAS feedback circuitry with r = 400 ns and R = 0.65 cannot be

obtained using standard coaxial cable (type RG-58/U) even with the predistortion

filters.

In this chapter, I have described the ETDAS feedback scheme in detail, consid-

ering both its time- and frequency-domain properties. I have illustrated the basic

elements required to implement ETDAS, and have presented a detailed high-speed

electronic version that takes into account practical experimental considerations. We
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are now prepared to apply this electronic implementation to the chaotic diode res-

onator system; results of this study will be presented in the next chapter.

53



Chapter 4

ETDAS Control of the Fast Chaotic
Diode Resonator

This chapter describes the experimental and theoretical results I obtain when using

ETDAS feedback to control the dynamics of the fast diode resonator circuit. I first

describe the diode resonator, detailing its construction and outlining its theoretical

description. I characterize its dynamics without feedback and demonstrate successful

control, after which I determine regimes for which control is successful, varying feed-

back and system parameters. I use the theoretical model of the system to investigate

the effects of latency on the domain of control. Transient behavior and times to

attain control are explored, and I also investigate the mechanisms by which control

is lost.

The results of this chapter demonstrate several important features of ETDAS

control. Most importantly, I find that larger values for the feedback parameter R

improve performance in several important respects. It greatly enlarges the domain of

control for highly unstable orbits, such that stabilization is achieved for a wide range

of gains -y, even for values of the bifurcation parameter for which no control is possible

if R = 0. I find that increasing R extends the domain of control in the presence of

significant latencies as well, and that it results in a wide range of gains for which the

system rapidly converges to the UPO following the initiation of control. Theoretical

results and numerical simulations show good agreement with experimental data.
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drive from the circuit and adds to it the ETDAS feedback. The behavior of the

system is sensed with a high-impedance buffer.

4.1 Experimental system: the fast diode resonator

In my experimental studies of controlling chaos using ETDAS, I use a "diode res-

onator" because it displays a wide variety of nonlinear behaviors including period

doubling bifurcations, hysteresis, intermnittency, and crisis. In addition, it is easy to

build and customize, and it is well characterized on slow time-scales [24]-[31]. The

low-speed diode resonator typically consists of an inductor and a diode connected in

series, driven by a sinusoidal voltage.

The high-speed version of the diode resonator, shown schematically in Fig. 4.1,

has additional components needed to implement high-speed control. It consists of

a rectifier diode (type 1N4007, hand-selected for low junction capacitance) in series

with a 25 1iH inductor (series DC resistance of 2.3 Q) and a resistor R5 = 50 . These

components are driven by a leveled sinusoidal voltage Vo(t) =V0 sin(wt) (w/2ir - 10.1
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MHz) that passes through a high-speed signal conditioner (50 Q output impedance).

The resistor R, converts the current flowing through the diode resonator (the mea-

sured dynamical variable) into a voltage V(t) which is sensed by a high-impedance

buffer (Analog Devices AD9620, propagation delay < 1 ns). The signal conditioner

consists of a high-speed inverting amplifier (Analog Devices AD9618, propagation

delay _ 3 ns) and serves two purposes: it isolates the sine-wave generator (Tektronix

model 3325A [106]) from the diode resonator and it combines the sinusoidal drive

signal V(t) with the ETDAS feedback signal V6p(t).

I construct the system using the same PC board etching techniques that were

used for the construction of the ETDAS circuitry (Sec. 3.3.2). An additional high-

impedance buffer (Analog Devices AD9620) is also included to monitor the ETDAS

feedback signal, to verify that V6p(t) becomes sufficiently small when an UPO is

stabilized. As a design note, I find that it is important to incorporate elements

of the feedback loop into the architecture of the chaotic system, such as the signal

combiner and the 50 Q current-to-voltage conversion resistor. This helps to minimize

the latency of the feedback loop.

4.1.1 Model of system

It is a complex task to predict theoretically the stability of the high-speed diode

resonator in the presence of ETDAS feedback based solely on experimental measure-

ments. Therefore, I use a simple model of the resonator that captures the essence

of its behavior. I will briefly outline this model here to make the numerical results

meaningful; a more complete description of the model, as well as parameter values

and methods for their determination, are given in Appendix A.

The system is described by two differential equations that can easily be derived

from basic circuit analysis. They describe the evolution of the voltage drop Vd across
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the diode and the current I flowing through the resonator as

dVd = (I- Id) (4.1)
dt (Cd - CJ)'

dl [-Vd- IR, + V(t)]

-t L

Several parameter in this model arise from treating the real components of the res-

onator as collections of ideal components in a fashion similar to that used in com-

mercially available electronic simulation software packages. Specifically, the behavior

of the 1N4007 diode is treated as an ideal diode (described by the Shockley formula,

which includes the parameter Id) in parallel with two voltage-dependent capacitances

Cd and C5. The quantities L and R, are the total inductance and resistance in the

circuit, respectively. All parameters of the model are determined by independent

measurements of the components. As we will see in Sec. 4.6, this model is adequate

to predict with good accuracy the stability of the controlled resonator.

4.1.2 Characterization of uncontrolled system

It is valuable to characterize the dynamics of the uncontrolled system, in order to

locate regimes of different behavior and provide a basis for comparison once control

is introduced. I characterize the diode resonator's dynamics by construction of bi-

furcation diagrams and first-return maps, using the sinusoidal drive amplitude V as

the bifurcation parameter. In the experiments, I capture multiple (typically three)

40-Jps-long time-series data of V(t) using a 100 MHz, 8-bit digitizing oscilloscope

(Tektronix model 2221A) and determine the maxima of V(t), denoted by V, using

a second-order numerical interpolation routine. The bifurcation diagram (Fig. 4.2a)

is generated by plotting approximately 300 values of V,, for each value of V as it

is varied from small to larger values (hysteresis in the system is evident when V is

varied from large to smaller values of V, but it is not shown in this diagram for
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Figure 4.2: Experimental and numerically generated bifurcation diagrams of the
uncontrolled diode resonator. All major features are reproduced by the model.
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clarity). It displays a typical period-doubling cascade to chaos where the transition

to chaos occurs at V - 1.5 V. Also evident are a narrow period-5 periodic window

at V " 1.8 V and a large period-3 window starting at V 2.4 V.

I generate the simulated bifurcation diagram by numerically integrating a dimen-

sionless form of Eqs. 4.1 (see Appendix A) using a fourth-order Adams-Bashforth-

Moulton predictor-corrector routine, taking 1000 integration steps per drive cycle. I

integrate for fifty cycles to allow the system to evolve through any transients and

then record 300 current maxima, converting to voltages V for comparison with ex-

periment. I find very good agreement between the experimentally observed and

numerically generated bifurcation diagrams (Fig. 4.2b). The model predicts all fea-

tures observed in the experiment, although there is a slight discrepancy in the size of

V. We will see in Sec. 4.6 that the model also predicts the stability of the controlled

resonator with good accuracy.

The first-return maps are generated by plotting V, vs. V+, for fixed values of

V. The experimentally observed chaotic maps of the system below (V = 2.2 V) and

above (V,0 = 3.6 V) the period-3 window are shown in Fig. 4.3a and 4.3b, respectively.

The general structure of these maps is similar to that observed in low-frequency diode

resonators [30]. The numerically generated first return maps for the same drive values

(Fig. 4.3c and 4.3d) show good agreement.

4.2 Experimental observation of control

With the chaotic diode resonator well characterized and modeled, I now apply ET-

DAS control to the circuit. The main tasks for the experiment when feedback is

introduced are to determine the criteria for successful control and to locate regimes

of - and R that meet those criteria. To prepare the ETDAS electronics, I set the

delay-time -, the feedback parameter R, and optimize the circuitry off-line as de-
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Figure 4.3: Experimental and numerically generated first-return maps of the un-
controlled diode resonator.

60



scribed in Sec. 3.3.3. I then connect the ETDAS circuitry to the diode resonator

using short coaxial cables and search for control while adjusting the feedback gain y.

The conditions for successful experimental control are that V(t) is periodic with

the desired period i- and the magnitude of the feedback signal V6p(t) drops below

a predetermined level. In principle, V6p(t) should vanish for a perfect reproduction

of ETDAS in a noise-free system, but noise and nonideal behavior of the ETDAS

circuitry lead to a nonzero value of Vbp(t) in practice. I characterize the nonideal

characteristics of the ETDAS circuitry using the transfer function IT(f)l, as mea-

sured in Sec. 3.3.4. Specifically, the transmission at the worst "notch" (see Fig. 3.7)

determines how much feedback is generated even when the system's behavior is per-

fectly periodic. Based on observations of this value and the noise level in the system, I

set the upper limit on the magnitude of the feedback to be that IV6p(t) < 5 x 10-'V.

I test the validity of the above experimental criteria by verifying that the con-

trolled orbits are indeed UPO's of the chaotic system by comparing the return maps

of the controlled and uncontrolled systems. The first-return map of a stabilized orbit

must fall on that of the unperturbed chaotic system if it is an UPO of that system.

I note that periodic states that are not UPO's of the system can be obtained under

different experimental conditions; however, in this case the feedback signal is large

(of the order of V). An example of this behavior will be shown in Sec. 4.8.

Figures 4.4a and 4.4b show the temporal evolution of V(t) when the ETDAS

feedback circuitry is adjusted to stabilize the period-1 and period-4 UPO's, respec-

tively, together with the associated feedback signal. The solid lines represent V(t),

and the dotted lines correspond to the associated ETDAS feedback. The sinusoidal

drive amplitude is 2.4 V (a chaotic regime in the absence of control) and the feed-

back parameters are -y = 6.2, R = 0.28 for the stabilized period-1 orbit and 7 = 4.2,

R = 0.26 for the period-4 orbit. It is seen that the feedback signal is a small fraction
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Figure 4.4: Time series data and first return maps illustrating successful ETDAS
control. Temporal evolution (solid line, scale on left) is shown for the stabilized pe-
riod-1 (a) and period-4 (b) UPOs, along with their associated ETDAS error signals
(dashed line, scale on right). Similar data are shown as first-return maps for the
controlled period-1 (c) and period-4 (d) trajectories. The controlled maps are high-
lighted by dark dots indicated by arrows, superimposed on lighter dots representing
the uncontrolled system. Parameter values are given in the text.
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of the drive amplitude (< 2 x 10 - 3 for both cases). The slight increase in V6p(t) for

the period-4 orbit is mainly due to imperfect reproduction of the form of the ETDAS

feedback signal by our circuitry. This effect is more prevalent for the period-4 setup

because the delay line is longer and hence causes more distortion of the signals due

to the dispersion and frequency-dependent loss of the coaxial cable.

Figures 4.4c and 4.4d present further evidence that the ETDAS feedback indeed

stabilizes the UPO's embedded within the strange attractor of the diode resonator. I

show return maps for the uncontrolled system (light dots) and the controlled system

(dark dots indicated by arrows) for the stabilized period-1 orbit (Fig. 4.4c, R'= 0,

and -y = 4.4) and the period-4 orbit (Fig. 4.4d, R = 0.26, and -y = 3.1) for V = 2.4

V. It is clear that the stabilized orbits lie on the unperturbed map, indicating that

they are periodic orbits internal to the dynamics of the uncontrolled system.

I find that the period-1 and period-4 UPO's shown in Fig. 4.4 can be stabilized

by initiating control at an arbitrary time; it is unnecessary to wait for the system

to naturally approach the neighborhood of the UPO nor target the system to the

UPO before control is initiated. This is possible for several reasons: the system is

particularly simple in that there is only one period-1 and one period-4 UPO; the

basin of attraction of these UPO's in the presence of ETDAS feedback is large; and

I apply large perturbations (V6b(t) is comparable to Vd(t)) to the system during the

transient phase.

4.3 Domain of control

The wide range of feedback parameters that stabilize these UPO's can be visu-

alized quickly from a plot of the "domain of control." The domain of control for a

given UPO is mapped out by determining the range of values of the feedback gain -y

at a set value of the feedback parameter R that successfully stabilizes the orbit as a
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Figure 4.5: Experimental domains of control as a function of drive amplitude for
period-1 and period-4 UPOs for two different values of R. The shaded regions indicate
period-1 domains for R = 0 (a) and R = 0.68 (b), and period-4 domains for R = 0
(c) and R = 0.65 (d). The dashed lines mark the points at which the orbit becomes
unstable in the absence of feedback.
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function of the bifurcation parameter V,. In general, increasing the feedback para-

meter R tends to enlarge the domain of control and shift it to slightly larger values

of -y. The period-i orbit can be stabilized using ETDAS feedback for all available V

when R = 0 and R = 0.68 as seen in Fig. 4.5a and 4.5b, respectively. It is clear that

the range of 'y that successfully stabilizes the orbit for a given value of V increases

significantly for R = 0.68 in comparison to R = 0, especially for larger values of V.

The largeness and shape of the domain of control is important for several practical

reasons. Since the domain is large, the system is rather insensitive to drift in the

feedback parameters or the state of the chaotic system, and control can be obtained

even with imprecise a priori knowledge of the proper feedback parameters. Also, the

ETDAS feedback can automatically track changes in V over its entire range without

adjusting -y because the shape of the domain is a wide, horizontal band.

Increasing the size of the feedback parameter R gives rise to more dramatic effects

on the domain of control when stabilizing the period-4 orbit, as shown in Figs. 4.5c

and 4.5d. It is apparent that TDAS feedback (R = 0) fails at even moderate values

of the bifurcation parameter. However, the domain of control can be extended to

include the entire range of V using R = 0.65, illustrating the superiority of ETDAS

for controlling highly unstable orbits. Also, the size and shape of the domain of

control for this case has all of the advantages mentioned previously for the period-1

domain of control.

4.4 Transient behavior

I stated in Sec. 4.2 that control could be successfully initiated at any time in

certain cases, regardless of the state of the system. This does require fairly large

feedback levels, however, and the dynamics during the initial transient can be quite

rich. The nature of the convergence of the system to the UPO is a function of the
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Figure 4.6: Transient dynamics of the diode resonator following initiation of ETDAS
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mark the points at which control is initiated. Graphs (a) and (b) show convergence
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are given in the text.
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precise state of the system when control is initiated and the value of the control

parameters. When the control parameters are adjusted such that the system is near

but within the boundary of the domain of control, the system often displays brief

intervals of periodic behavior other than the desired behavior during the transient

phase. Figures 4.6a and 4.6b are two examples of the approach to the period-1 UPO

for V = 1.9 V, R = 0.68, and -y = 5.2 (a) or 7 = 7.0 (b), where I plot the peak value

V of V(t) as a function of the peak number n. Control is initiated near n = 20,

marked by the dashed vertical line. In one case (Fig. 4.6a), an initial chaotic transient

gives way to a period-2 behavior that decays exponentially to the desired UPO. In

the second (Fig. 4.6b), an initial chaotic transient abruptly switches to controlled

behavior.

Richer transient dynamics are observed when stabilizing the period-4 UPO, as

shown in Fig. 4.6c and 4.6d for V = 1.9 V, R = 0.26, and -= 6.1 (c) or -y = 2.6 (d).

In one case (Fig. 4.6c), I observe a brief interval of period-2 behavior that eventually

destabilizes and decays in an oscillatory fashion to the desired UPO. In the other case

(Fig. 4.6d), the system passes through intervals of period-2 and period-16 behavior

before converging to the period-4 UPO. It is not surprising that the system resides

near a period orbit with a period longer than the desired UPO since the ETDAS

feedback cannot distinguish between the two different behaviors. However, the low-

period behavior is not stable for long times since the ETDAS feedback is not sensitive

to and does not correct for noise and fluctuations that destabilize this undesired low-

period orbit.

4.5 Average time to attain control

While the transient dynamics are 'quite rich near the boundary of the domain of

control, ETDAS feedback stabilizes rapidly the desired UPO over most of the domain.
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Figure 4.7 shows the average time < t, > to obtain control of the period-1 UPO from

an arbitrary starting time as a function of the feedback gain 7 for V = 1.9 V and

R = 0 (Fig. 4.7a) and R = 0.68 (Fig. 4.7b). The hashed regions indicate values of

-y for which stable period-1 behavior is not observed. The data points represent the

average of 20 trials and the error bars indicate the standard deviation of the times to

obtain control. It is seen that < tr > is less than 3 ps and typically less than 1 [Ls (10

orbital periods), except near the edge of the domain of control where < t, > grows

rapidly. In addition, it is seen that the range over which rapid control is obtained

increases significantly by increasing R to 0.68, highlighting one of the advantages of

ETDAS feedback control over TDAS feedback. Figures 4.7c and 4.7d show similar

data for the period-4 UPO. I note that < t, > should increase rapidly near the

edges of the domain of control for this UPO (as it does in the period-1 case). In the

experiment, however, limited precision in -y makes it impossible to get sufficiently

close to the low-gain boundary to detect the rapid increase.

4.6 Theoretical analysis

The experimentally measured domains of control can be predicted theoretically with

good accuracy using the techniques described in Sec. 3.1.2. Briefly, the procedure to

determine the domain is to [94]:

" determine the trajectory of the desired UPO for one value of the bifurcation pa-

rameter V by analyzing the coupled nonlinear differential equations describing

the dynamics of the diode resonator (see Eq. 4.1);

" choose the feedback parameters fi and R (note that fi is set throughout the

experiment by our choice of measured system variable and control parameter);
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* find the boundaries of the domain of control (the points at which the winding

number jumps from zero to a positive integer, see Eq. 3.4) for one value of the

bifurcation parameter V using standard numerical root-finding algorithms;

* follow the boundary by repeating this procedure for the other values of V.

I carry out this series of procedures using code written by M. E. Bleich, specifically

with the programs hunter (first step) and crawl (last two steps). A more detailed

description of these programs can be found in Ref. [95]. Note that one important

simplification in this analysis is that it does not include the effects of control-loop

latency.

Figure 4.8 compares experimentally measured and theoretically predicted domains

of control. These are shown for the period-1 UPO with R = 0.68 in Figs. 4.8a and

Fig. 4.8b, respectively. The theoretical analysis correctly predicts the general horizon-

tal banded shape of the domain, and the low-gain boundary is in good quantitative

agreement with the experimental observations. However, in contrast with the ob-

servations, the theoretical analysis predicts that very large values of the feedback

parameter (-y > 1000) will give rise to successful control. Somewhat closer agreement

between the observed and predicted domain of control is obtained for the period-4

orbit (R = 0.65) as shown in Fig. 4.8c and 4.8d, respectively. I obtain similar results

for other values of the control parameter R.

The discrepancy between the theoretically predicted and experimentally observed

domains of control is due primarily to the effects of control-loop latency (t =10

ns for our implementation of ETDAS). To investigate the effects of ti, I turn to

direct numerical integration of the time-delay differential equations describing the

diode resonator with feedback, made dimensionless for ease of computation. The

equations are integrated using a fourth-order Adams-Bashforth-Moulton predictor-

70



experiment theory

3 i

• . ' (a) ' . (b) - ,

20 0,"

10 • •' " . -• °,

U 1 2 3 1 2 3

bua30to pa t V (V)
a (c) a

20 -

70

10 " . L

1 2 3 12 3

bifurcation parameter V0  (\/)

Figure 4.8: Comparison of experimental and theoretial domains of control. Pe-
riod-1 domains (a) and (b) have R = 0.68, and period-4l domains (c) and (d) have
R = 0.65. The vertial lines indicate the points at which the orbits become unstable
in the absence of feedback. The theoretially predicted domains assume tj = 0.

71



corrector scheme with a step size of 0.1 ns. Successful control is indicated when the

ETDAS error signal falls to the machine precision in a time equal to 20,000 orbital

periods. I note that this procedure may underestimate the size of the domain of

control when the convergence is slow. To set the initial conditions for the time-

delay differential equations, I integrate the equations without the time-delay terms

(equivalent to the diode resonator in the absence of control), initially using a fourth-

order Runge-Kutta algorithm. I store variable values, derivatives, and calculated

time-delay in arrays as I integrate; these values are needed for the predictor-corrector

routine and to determine V6 (t). I switch to the predictor-corrector integrator after

ten cycles of Runge-Kutta and add the control terms. I note that despite the infinite

series in Eq. 3.1, it is not required to retain all past variable values to calculate Vp (t);

ETDAS can be expressed recursively, requiring only storage of the information from

one past orbital cycle [20].

As a note on numerical methods, I choose not to use the more common fourth-

order Runge-Kutta algorithm when time-delay terms are included because is not

simple to properly account for the delay terms at the trial midpoints this algorithm

uses in calculating each integration step. In contrast, the predictor-corrector routine

uses computations only at the full integration steps, thereby avoiding the difficulty.

See Ref. [107] for more details on these methods.

Figure 4.9 shows the experimental (period-i, Fig. 4.9a; period-4, Fig. 4.9c) and

numerically predicted (period-i, Fig. 4.9b; period-4, Fig. 4.9d) domains of control for

the UPO's with te = 10 ns and R = 0.68 (period-i) and R = 0.65 (period-4). The

agreement is much improved, highlighting the extent to which even small control-loop

latencies (only 10% of the orbital period for the period-1 UPO) can shift the domain

of control.
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4.7 Effects of control-loop latency

To further probe the deleterious effects of large control-loop latency, I add additional

delays to the feedback signal by inserting various lengths of coaxial cable (type RG-

58/U) between the output of the ETDAS error generating circuitry and the signal

conditioning device at the input to the diode resonator. In this case, the total latency

te is the sum of the time lags of the ETDAS circuitry (10 ns) and that incurred by

the additional coaxial cable. This mimics the situation in which slower electronic

components are used in the ETDAS circuitry.

Figure 4.10 shows the ranges of -y that give rise to successful control of the period-

1 UPO as a function of tj for V = 1.9 V, R = 0 (Fig. 4.10a) and R = 0.68 (Fig.

4.10b). The vertical dashed line is at t = 10 ns, marking the minimum possible for

this experimental configuration. For both cases, it is seen that increasing te causes the

range of -y to decrease until control is unattainable when the time-lag is approximately

one-half of - (100 ns). Stabilization of the orbit is possible for larger values of te as

a new region of control appears, although with the opposite sign of the feedback

parameter -y. It is also seen that the range of -y that gives rise to control when R = 0

is much less than that when R = 0.68, indicating that ETDAS is more effective than

TDAS in the presence of a time lag. Control is not possible for tt > 120 ns.

I obtain similar results when stabilizing the period-4 orbit at V = 1.9 V, although

control fails for much smaller tt, as shown in Fig. 4.11. Control is possible only to

t, - 26 ns for R = 0 (4.11a) and t, _ 70 ns for R = 0.65 (4.11b). Also, the range of y

that gives rise to successful control is much larger for R = 0.65. The fact that ETDAS

feedback significantly extends the range tt in comparison to that achievable by TDAS

suggests that ETDAS may be effective in controlling the dynamics of systems that

fluctuate on the nanosecond or even sub-nanosecond scale for which relatively small
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te may be difficult to achieve.

In contrast to the behavior observed for the period-1 orbit, I find no islands

of stability for -y < 0 at the longer time-lags. I do find, however, a small region

around te f- 107 - 117 ns where the orbit is stabilized intermittently when R = 0.65.

The system alternates irregularly between intervals of "noisy" period-4 behavior and

intervals of chaotic behavior. The indicated region of Fig. 4.11b is the where the

system resides near the period-4 orbit for at least 10% of the time on average. Under

some conditions, the systems remains near the UPO for - 16 ms, corresponding to

40,000 orbital periods. Figure 4.12 shows examples of the dynamical evolution of

the peaks V, of V(t) during this intermittent behavior. It is seen that the orbit can

regain stability abruptly (Fig. 4.12a), but may destabilize via a gradual transition

through other periodic behaviors (Fig. 4.12b). Note that these transitions do not

result from a change in the feedback level, but occur spontaneously in the system.

4.8 Dynamics of the system outside the domain of
control

It is instructive to investigate the dynamics of the diode resonator in the presence

of ETDAS feedback outside the domain of control. This study helps to identify

mechanisms by which control is lost, which may serve as a guide when attempting to

control the dynamics of new systems. I explore the range of different behaviors by

adjusting the feedback gain -y while fixing the other control parameters at Vd = 1.9

V,T -= 100 ns (period-1 UPO control), R = 0, and t = 10 ns. For these parameters,

the range of successful control of the period-1 orbit is approximately 3.14 < Y < 16.9.

Similar behaviors can be obtained by fixing -y and adjusting a different parameter or

when attempting to control longer-period orbits.

As -y increases from zero to the lower boundary of the domain of control (-y
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Figure 4.12: Intermittent chaotic bursts away from period-4 UPO. The dots rep-
resent peaks V of V(t). Note that control is regained abruptly (a), but the system
destabilizes gradually through higher-periodic behavior (b).

3.14), the system goes from the chaotic state to the desired period-1 UPO through

an inverse period-doubling cascade. Figure 4.13a compares the return map of the

system without ETDAS feedback (light collection of points) and with feedback (dark

collection of points indicated by arrows) for "y = 2.5. It is seen that the system with

feedback displays period-2 behavior that is not part of the original chaotic attractor

since the points do not fall on the chaotic return map. The error signal Vbp(t) is large

in this case.

I find that the system displays quasi-periodic behavior when the feedback gain is

larger than the higher boundary of the domain of control (-y "- 16.9). Figure 4.13b

shows the return maps of the system with and without feedback for y = 17.5 where

it is seen that the points fall on an oval centered on the location of the period-1 fixed

point. The temporal evolution of V(t) displays oscillations around 10.1 MHz whose

amplitude is modulated by low-frequency (,-2 MHz) oscillations. For large values
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Figure 4.13: First return maps illustrating the dynamics of the system outside the
period-1 domain of control. In (a), the system displays period-2 behavior (two dark
dots indicated by arrows) when the feedback gain -y is too weak. These dots do
not fall on the return map of the unperturbed system (lighter dots), indicating this
period-2 orbit is not a true UPO of the original system. In (b), the system undergoes
quasi-periodic dynamics (the dark oval centered on the period-1 fixed point) when
the feedback gain is too large.

of y, the low frequency oscillations become more pronounced and the oval-shaped

return map increases in size.

Note that these mechanisms by which control may fail bear a relation to the

transient dynamics described in Sec. 4.4. If the control is weak, the system tends

toward higher periodicities; if the control is strong, low-frequency oscillations become

prevalent in the dynamics.

A more sensitive technique for investigating the dynamics close to the boundary

of the domain of control is to perform a spectral analysis of V(t). Figure 4.14a shows

the spectrum of the signal V(f) for -y = 3.1, just outside the lower boundary of the

domain of control. Clearly evident are spectral features at multiples of 5 MHz (the
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Figure 4.14: Power spectra of V(t) outside the domain of control for the period-1
UPO. The cases shown are similar to those in Fig. 7.13. In (a) the spectrum has
features at multiples of 5 MHz, indicating period-2 behgaior when the feedback gain
is too weak. In (b) the spectrum displays sidebands displaced by -2 MHz, indicating
low-frequency modulation of the fundamental frequency when the feedback gain is
too strong.

subharmonic of the fundamental frequency) indicating period-2 behavior. Note that

subharmonic peaks are >30 dB below the peaks of the fundamental frequency. Figure

4.14b shows the spectrum for -y = 17.2, just above the upper boundary of the domain

of control. Sidebands about the fundamental spectral features displaced by -2 MHz

appear in the spectrum, indicating the low-frequency modulation of the fundamental

frequency. Note that these frequencies appear where the ETDAS feedback is less

sensitive (recall the form of the transmission function of the ETDAS circuitry shown

in Figure 3.3). Hence, increasing R tends to suppress the growth of these frequencies

and enlarge the domain of control.

This chapter has presented the experimental results of ETDAS control of the diode

resonator. I have demonstrated successful control, meeting appropriate experimental
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criteria. I have measured domains of control, and demonstrated that nonzero values

of R enlarge the domains considerably, particularly for highly unstable orbits and in

the presence of significant latencies (although no control is possible when the latency

becomes too large). These results have been supported by good agreement with

numerical predictions. Finally, I have explored the transient dynamics of the system

and the behavior of the system outside the domain of control. This completes my

study of ETDAS control of the diode resonator. In the chapter which follows I will

introduce another experimental system, the external cavity semiconductor laser.
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Chapter 5

Power Dropout Events in an
External-Cavity Semiconductor Laser

This chapter is the first of three in which I study the external cavity semiconduc-

tor laser, my second experimental system. Its purpose is to characterize and un-

derstand the instability known as "low-frequency fluctuations" (LFF), or "power

dropout events." This chapter is devoted strictly to the dynamics of this system

in the absence of control, which is necessary because the LFF regime is not well

understood. For example, the LFF dynamics have been modeled as a stochastically-

driven particle in a potential well [108], as a "time-inverted type II intermittency,"

[109], and as deterministic antimode dynamics [39, 110]. Furthermore, it has been

shown that spontaneous emission noise can strongly affect the characteristics of the

power dropout events [38]. I therefore perform new measurements that provide addi-

tional knowledge about the long-time behavior of the system, in the hope that better

understanding of the laser dynamics will naturally lead to more effective control.

I begin by introducing the relevant general features of semiconductor lasers sub-

jected to optical feedback, and discuss the Lang-Kobayashi delay-differential rate

equation model of the system. Subsequently, I describe the experimental appara-

tus, after which I characterize LFF both experimentally and theoretically. Finally, I

consider the power dropout behavior from the point of view of a first-passage time

problem. Specifically, I model the system as a noise-driven particle in a potential

well with a barrier, where a power dropout occurs when the particle escapes over

the barrier. This analysis produces reasonable agreement with experimental data

measured at low laser powers, but misses some interesting and unexplained results
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appearing at higher powers.

5.1 Introduction to semiconductor lasers in exter-
nal cavities

The semiconductor laser, introduced in 1962 [111]-[114], has made an enormous tech-

nological impact, particularly in applications of telecommunications and data storage.

They are cheap, reliable, and efficient, making them ideal for commercial production

and use; they are also very small, allowing their incorporation in technologies where

miniaturization is desirable. Recent decades have witnessed the proliferation of effi-

cient fiber-optic communication systems, possessing information-carrying capacities

that are orders of magnitude greater than the copper wires that preceded them. Sim-

ilarly, digital optical discs read by diode lasers are rapidly replacing magnetic storage

media in audio, video, and computing applications. This extraordinary usefulness

has led to a very large research effort devoted to the understanding and use of these

devices.

Much of the research has been at a fundamental level, due to the important dif-

ferences between the semiconductor laser and other types of lasers; I will discuss

some of these characteristics in the next section. Nonlinear dynamicists have had a

long-standing interest in lasers, largely originating in Haken's discovery of the isomor-

phism between laser dynamics and turbulent convective flow [115]. One particularly

important development in the study of nonlinear dynamics of semiconductor lasers

is Lang and Kobayashi's paper on the effects of time-delay optical feedback [36]; the

degrees of freedom in the system become infinite when such feedback is introduced,

allowing a variety of complex behaviors to occur. This branch of study connects di-

rectly with the major technological applications, since optical feedback is often hard

to avoid in fiber-optic and optical disc applications.
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5.1.1 The semiconductor laser

Any laser has two required components: (1) a medium that provides optical gain

by stimulated emission, and (2) a cavity that provides a feedback mechanism and

frequency selection. As the name implies, semiconductor lasers employ semiconductor

materials as a gain medium, which can be pumped using electrical or optical methods.

They have high gains, such that lasing action can be sustained even if the cavity is

formed by the cleaved facets of the semiconductor material, with reflectivities of about

30%. This reflectivity arises because the index of refraction of the gain medium is

so high (- 3.5) relative to air. However, coatings are frequently used in commercial

lasers, both to increase or decrease the reflectivity of the facets depending on the

application.

Historically, the first semiconductor lasers used a forward-biased p-n junction as

the gain medium, known as homostructure lasers. Later, the heterostructure laser was

developed, employing an "active layer" of one semiconductor material sandwiched

between two cladding layers of a different semiconductor. This configuration has

important advantages. First, the active layer is designed to have a smaller band gap

than the cladding layers, which helps to confine the electrons and holes to the active

region, thereby reducing the threshold current. In addition, it has a higher refractive

index which helps confine the optical mode to the active layer, creating a laser with a

high transverse and longitudinal coherence. This feature is important to my research,

since the Lang-Kobayashi model I use for theoretical investigations assumes the laser

operates in a single longitudinal mode.

To place semiconductor lasers in a familiar framework, they are considered to be

Class B lasers along with Nd:YAG, C0 2, and Ti:sapphire lasers, in the classification

scheme described by Arecchi [116]. The criterion for such categorization is that
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the characteristic decay rate for the polarization density of the gain medium is at

least an order of magnitude greater than the decay rates for the field and inversion

(this classification scheme is based on semiclassical laser theory, in which lasers are

described with three rate equations, one each for electric field strength, macroscopic

polarization, and inversion density). In the case of semiconductor lasers, the decay

times for the inversion, electric field, and polarization are on the order of 1 ns,

1 ps, and 0.1 ps, respectively [117]. The polarization density can be eliminated

adiabatically from the equations, and thus a semiconductor laser is well described

by the two remaining equations. Class B lasers by themselves cannot exhibit chaotic

behavior, unlike the Class C lasers that require all three equations (as was illustrated

in Sec. 1. 1). However, they readily display instabilities and chaos if additional degrees

of freedom are introduced, by such means as optical feedback, for example. I will

discuss the case of optical feedback from a distant reflector in the next section.

Although they are categorized as Class B lasers, semiconductor lasers have sev-

eral characteristics that distinguish them from conventional types. They are very

small, with typical dimensions of the active region of 300 x 1.5 x 0.2 Iym. They are

also very "open," meaning that relatively low reflectivity surfaces form the cavity,

whereas conventional lasers generally use much higher reflectivities. This openness is

possible due to the high gain of the device. One consequence of this property is that

semiconductor lasers are very susceptible to external optical signals. This can be ben-

eficial, allowing both tuning and linewidth reduction by means of grating feedback,

for example, but unplanned optical perturbations more often lead to diminished per-

formance. Finally, a phenomenon called phase-amplitude coupling is very important

in semiconductor laser physics, whereby fluctuations in the phase of the optical field

affect the amplitude, and vice versa. This interaction arises through the coupling of

the gain and frequency of the optical field through the complex refractive index of
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the semiconductor medium. The strength of this coupling is usually quantified by

the linewidth-enhancement parameter a [118], which is proportional to the relative

changes in the index and gain with carrier density. Semiconductor lasers have large

values of a (typically 3 - 7), whereas it is approximately zero for most other lasers.

5.1.2 External cavity effects

As stated previously, semiconductor lasers are very susceptible to optical pertur~a-

tions due to their openness and the high optical gain of the active medium. I study

the case where optical feedback arises from an external cavity. This system is really a

compound-cavity configuration with two distinct laser cavities, as illustrated in Fig.

5.1. One is formed by the cleaved facets of the semiconductor material r, and r2,

creating the solitary laser. The other is the external cavity, formed by a distant

reflector R and the rear facet of the laser chip. This system would be equivalent to

a single-cavity laser with the gain medium located in one end of the long cavity if

the right facet of the chip were completely antireflection-coated (r2 = 0), whereby

this could accurately be called an external-cavity laser. Unfortunately, the standard

nomenclature is unclear, and the compound-cavity system that I study is usually

referred to as an external-cavity laser system, which is the name I use throughout

this thesis.

The optical feedback can have varied and profound effects on the laser dynamics;

the specific behavior depends primarily on the roundtrip time in the external cavity

and the power reflected from the distant surface (as well as on the physical parameters

of the semiconductor laser itself). In theoretical terms, the distant reflector introduces

a time-delay term representing the reinjected field after one roundtrip time in the

external cavity, causing the laser equations to become infinite-dimensional. The

instantaneous state of the solitary laser as well as the state of the propagating field
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Figure 5.1: External-cavity semiconductor laser. The active region of the solitary
laser is sandwiched between p-type and n-type cladding layers that provide elec-
tron-hole pairs generated by the current J. The solitary laser cavity is formed by the
mirrors r, and r2, whereas the external cavity is formed by r, and the reflector R
located a distance L from the right facet of the laser.

everywhere in the external cavity must be specified to completely describe the state

of the dynamics. From a different point of view, the distant reflector creates new

external cavity modes that differ from those of the solitary laser.

Researchers have found several classes of dynamics resulting from the introduc-

tion of the external cavity. One useful effect is that the linewidth of the laser can

be significantly narrowed [119]-[121], but there are several other types that are more

interesting from the nonlinear dynamics point of view. For example, the laser may

exhibit intermittency [109, 122] or multistability [123]-[125], and spontaneous emis-

sion noise may cause the laser to hop from one external cavity mode to another

[126]. Dramatic spectral broadening of the laser linewidth, the phenomenon known

as "coherence collapse," has been identified as a form of chaos [127, 128].

The dynamics of these behaviors are generally believed to be well understood [33].

One notable exception, however, is known as "low-frequency fluctuations (LFF)"

[37], sometimes called "power dropout events." This is the instability I study in this
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chapter and try to control in the subsequent two chapters. It occurs when the external

cavity is long (tens of cm) and the optical feedback strength is weak to moderate.

Its dominant feature is spontaneous, rapid decreases of the average laser intensity

that occur at irregular intervals. In addition, researchers have recently found that a

semiconductor laser exhibiting LFF dynamics generates a train of ultrashort pulses

[40] that are irregular in width, spacing, and amplitude. I characterize the LFF

dynamics in detail in Sec. 5.4.

5.2 Model of the system

The model for semiconductor lasers with external cavities put forth by Lang and

Kobayashi (LK) in their 1980 paper [36] is a reasonably simple theoretical descrip-

tion yet captures the essential physics of the system. It has been widely studied and

found to be in good agreement with experimental observations. I use the LK equa-

tions in my theoretical work studying the LFF dynamics. In this section I discuss the

origins of these equations, their relationship to standard semiclassical laser theory,

and their most important features and limitations. I consider their steady-state solu-

tions, which are important for understanding the mechanisms of LFF and introduce

a dimensionless form that I use for computations. Derivations for the LK equations

and their dimensionless form are provided in Appendix B.

5.2.1 The Lang-Kobayashi equations

The LK equations are not derived entirely from first principles, unlike those of stan-

dard semiclassical laser theory. Rather, they are a reasonable compromise between

first principles and phenomenological considerations. For the sake of comparison,

consider the outline of the usual semiclassical approach [3]. The electromagnetic

field is described classically by Maxwell's equations [129], whereas the gain medium
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is treated quantum mechanically, typically as an ensemble of quantum oscillators with

two well-defined energy eigenstates. The classical field £ induces microscopic electric

dipole moments in these two-level systems, which are then statistically summed using

a density-matrix approach to obtain a macroscopic polarization P. This polarization

becomes the source term in the electromagnetic wave equation, which is then reduced

to a set of rate equations (first-order differential equations) using the slowly-varying

envelope approximation. These equations describe the evolution of 8, P, and the

population inversion AK.

In deriving the semiconductor laser rate equations, I follow a similar procedure

in that the field 6 is treated classically. In contrast, however, the semiconductor

material cannot be treated simply as a set of independent two-level atoms. The

semiconductor medium behaves only approximately as a collection of two-level atoms;

population inversion occurs between continuous energy bands separated by a band

gap. Light is emitted when electrons that have been excited to the conduction band

(usually by applying an electrical current) recombine with holes in the valence band,

with the photon energy ?Lw approximately equal to the band gap energy. To treat

this system in a fully quantum mechanical fashion would require detailed knowledge

of the band structures, correlations between electrons and holes (many-body effects),

and decay mechanisms. Therefore, the semiconductor medium is treated in a more

phenomenological fashion.

For the purposes of this chapter, it will suffice to merely sketch the derivation of

the LK model that describes an external cavity semiconductor laser, leaving the full

derivation to Appendix B. The classical treatment of the electric field £ begins with

Maxwell's equations in a nonmagnetic medium, leading to the wave equation

V16 UaS0 1 02E 1 a2:p(51To_25 - -- 25.1)
aC2 Ot c2 6t2  

0 c2 6t2  (
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where P is the polarization, c is the speed of light, o- is the conductivity of the

medium, and co is the permittivity of free space. Next, I Fourier transform Eq.

5.1, assume that the field is linearly polarized and propagates in the z-direction, and

eliminate the transverse structure to obtain a simplified equation for the z-dependent

part of the field E (z) at frequency w, given as

[2+k2 (z) & (z) = 0, (5.2)

where the wavevector k (z) contains the physics of the interaction of the field with

the semiconductor medium. At this point, I introduce the phenomenological form for

k (z), given by [130]

k(w, N) = -n (w, N) + i1 [g (w, N) - a], (5.3)

where w is the angular optical frequency of the lasing mode, N is the average carrier

density of the active region, n is the real refractive index, a, is the internal loss per

unit length, and g is the modal gain representing the difference of the stimulated

emission and stimulated absorption per unit length. It is assumed that n and g vary

linearly with N about some stationary operating point.

Equation 5.3 is then incorporated in a travelling-wave model of the external cavity

semiconductor laser [130]. The threshold condition in this model determines which

optical frequencies are supported by the solitary laser cavity. In addition, I derive

a rate equation for the slowly-varying complex envelope function of the electric field

using a Taylor expansion of k about the stationary point, then transforming back to

the time domain. To complete the set of equations, I also assume the rate equation for

N is of the usual form [131], choosing a simple expression for the rate of spontaneous

recombination of carriers. These two rate equations together are called the Lang-

Kobayashi equations,

-..E = -l(1+ ia) Gg(Ng-Nth) E+ --e- °E (t-T) (5.4)
dt 2 Tin

90



d = J_ [GN (N- Nth) IEI 2 , (5.5)

where E(t) is the slowly-varying complex envelope function of the electric field, N(t)

is the carrier density, a is the linewidth-enhancement parameter, GN = (OG/ON)th

where G(N) is the gain rate, Nth is the carrier density at the threshold of the solitary

laser, K is the optical feedback parameter, w, is the angular optical frequency of the

solitary laser, J is the carrier density pump rate, r, is the carrier lifetime, Tp is the

photon lifetime, Ti is the roundtrip time inside the solitary laser cavity, and r is the

roundtrip time in the external cavity. Note that E(t) is normalized in these equations

such that IE(t)12 is the photon number density. That is, the number of photons in

the lasing mode is 1(t) = V jE(t) 2, where V is the volume of the active region. Note

also that the expression in brackets in Eq. 5.5 is just an alternate expression for

G(N), which can be seen by noting that G(Nth) = (1/r-p) and considering that

1
G(N) = GN (N - No) = G(Nth) + GN (N - Nth) = - + GN (N - Nth), (5.6)

Tp

where N is a constant, usually the carrier density at transparency.

The LK equations as given by Eqs. (5.4,5.5) are frequently studied because they

contain much of the essential physics of the system without being excessively com-

plicated in form. In using such equations it is important to be aware of the simplifi-

cations that are made, as well as additional fine-tuning that may improve agreement

between theoretical predictions and experimental results. One important simplifica-

tion is that the theory assumes single-mode behavior, which may be questionable if

the laser is near threshold. Also, spatial effects such as carrier diffusion are ignored,

assuming instead a uniform average carrier density in the semiconductor.

Various improvements to these equations have been considered. For example,

some researchers model the experimentally observed effect of gain saturation [132] by

expressing the gain as G(N) = G(N)/ (1 + E IE 2 ) where E IE12 << 1. Other models
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include multiple longitudinal lasing modes, which may interact through the carrier

reservoir [124, 130, 133]. In such a theory, the frequency dependence of the gain must

be taken into account. These additional complications will not be considered in this

thesis.

Finally, in many studies it is desirable to include one or more stochastic terms

to the rate equations to take into account random processes such as spontaneous

emission. It is usually assumed that spontaneous emission into the lasing mode is

the dominant random force, and thus a Langevin force term FE (t) is added to the

right hand side of Eq. 5.4. It is a Gaussian white-noise function described by

(FE (t)) = (FE (t)*) = 0, (5.7)

(FE (t) FE (t')*) = 2 DEE,5 (t - t'). (5.8)

In these expressions, the diffusion coefficient 2 DEE, = R/V [134], where R is the

rate of spontaneous emission into the lasing mode, given by R = nSPG (Nth) [124].

The spontaneous coefficient nP is a constant given by [134]

1
nSP = 1 - exp [(hw - eV) / (kBT)]' (5.9)

where hw is the photon energy, eV is the band gap energy of the semiconductor, kB

is Boltzmann's constant, and T is the absolute temperature. Spontaneous emission

is included in my investigations of LFF, and it will be shown to play an important

role.

The LK equations (including the Langevin force) can be expressed in terms of

dimensionless quantities [135]; it is this form that I use for all numerical simulations

of the laser in this thesis. The equations for the dimensionless field Y and the

dimensionless carrier number above threshold Z (cx N - Nth) are given by

dY = (1 + ia) ZY ±'qe-"0 Y (s - O) + Py (s), (5.10)
ds
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TdZ = P-Z-(1+2Z) jYj2  (5.11)
ds

where s = t/p is the dimensionless time, the pump parameter P is related to the

driving current J, Py (s) is the dimensionless Langevin force, and q, Q, 0 and T

are normalized to the photon lifetime rp. A complete description of this transforma-

tion is given in Appendix B, along with the parameter values I use in all numerical

simulations.

5.2.2 Steady states of the laser with optical feedback

The Lang-Kobayashi equations in the LFF regime possess a large number of sta-

tionary solutions that play a important role in the dynamics of LFF. I find their

steady states by following a procedure similar to that of Ref. [136]. The solutions

are assumed to have the form

E(t) E exp (iAwst), (5.12)

N(t) = N,, (5.13)

where E, N,, and Aw8 = w, - w, are real constants. I insert Eq. 5.12 into Eq. 5.5

to immediately obtain the condition

E ( 8 (2lY ) (5.14)1G(
Next, I substitute Eqs. 5.12,5.13 into Eq. 5.4 and split the resulting equation into

real and imaginary components. These equations yield the conditions

2,
N - Nth - cos (wr + Awr), (5.15)

Awr = -Csin [Aw- + wo r + arctan (o)], (5.16)

where C = V-TI'[+ a/Tin is the effective feedback strength. The solutions to Eqs.

5.14 - 5.16 define one or more fixed points (E2, Aw8, N,); this coordinate system
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Figure 5.2: Phase space ellipse indicating possible locations of fixed points. Unstable
antimodes occur on the branch of the ellipse above the dashed line, and modes occur
below. The dominant mode is the fixed point at which the output power is maximized.
The operating point of the solitary laser is at the origin. The linewidth enhancement
parameter is taken to be a = 5.

describes a phase space that is very useful for understanding the dynamics of external

cavity semiconductor lasers [108].

Equation 5.16 is transcendental and must be solved numerically or graphically.

Multiple solutions for Awr will exist if C > 1 [123, 137]; this condition is easily

met for the case of LFF dynamics when r is not too small, since r > Tim (there is

only a single solution for Aw, at zero feedback). The quantity Aw- is an important

dynamical variable for the system because it represents the difference of the phase

of the slowly-varying complex electric field variable 0(t) - Awt and its value one

cavity-roundtrip time earlier 0 (t - r).

Henry and Kazarinov recognized that a relationship exists between N, and Aw8,

such that the fixed points must fall on an ellipse in the (N, Aw) plane [108]. Specifi-
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cally, the fixed points must lie on the curve defined by

Aw - GNAN ( AN)= ( ) (5.17)

where AN = N - Nth. This ellipse is shown in Fig. 5.2. The fixed point with

the lowest carrier density is called the dominant external cavity mode [128]. For

systems exhibiting LFF, the cavity length and feedback parameter are sufficiently

large that many fixed points exist, in which case the fixed points are assumed to be

quasi-continuous on the ellipse. The dominant mode then can be taken to satisfy

WT (mod 27) = 0. This point is indicated by the arrow in Fig. 5.2, and corresponds

to the minimum carrier density (maximum output power) possible on the ellipse.

Note that the point corresponding to the solitary laser threshold condition is located

in the center of the ellipse at (N, Aw) = (0, 0).

The fixed points are typically classified into two types, based on an approximate

linear stability analysis [136]. One type is always unstable, and is called an antimode;

the other may be either stable or unstable depending on the system parameters, and

is referred to as an external cavity mode (or simply a "mode") [138]. They are created

in pairs via a saddle-node bifurcation as the effective feedback level increases [137].

Referring again to Fig. 5.2, all antimodes are located on the half of the ellipse above

the dashed line, and all modes are located below.

Physically, antimodes correspond to destructive interference between the field

returning from the external cavity after one roundtrip and the field in the solitary

laser at the output facet. Mathematically, a necessary and sufficient condition for a

fixed point to be an antimode is given by [138]

1 + C cos [Aw,-r + Wo0 - + arctan (a)] < 0. (5.18)

All such fixed points exhibit a saddle-node instability, where the three dominant

eigenvalues consist of a complex-conjugate pair with a negative real part and a posi-
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tive real root [39]. In contrast, the external cavity modes indicate constructive inter-

ference between the fields. These fixed points may be stable, or they may undergo

Hopf bifurcations, indicating that relaxation oscillations for that point have become

undamped [136, 139]. Destabilized external cavity modes are sometimes called qua-

siattractors or attractor ruins [110] when they collide with other such modes, giving

rise to transient chaos and chaotic itinerancy. This mode-antimode structure is con-

sidered to be a primary mechanism of LFF, with power dropouts occurring due to

a destabilized external cavity mode coming into crisis with an antimode. These dy-

namics will be explored in Sec. 5.4.2, where I characterize the LFF dynamics in

detail.

5.3 Experimental apparatus

With an understanding of the basic theory of the external cavity semiconductor laser

well in hand, I now describe the experimental system with which I investigate the

characterization and control of LFF. The system is relatively simple, consisting of the

external cavity system itself, designed to provide a tunable level of optical feedback,

and the actual semiconductor laser with its associated electronics for temperature

stabilization and current injection. I describe each of these elements in this section.

5.3.1 External cavity configuration

The layout of the external cavity semiconductor laser system is illustrated in Fig.

5.1. The solitary laser diode is a Spectra Diode Labs SDL-5401-G1 laser [140], which

is a GaAs/AlGaAs heterostructure index-guided laser with a nominal wavelength of

A = 789 nm and threshold injection current of 17 mA. It is placed in a mount specially

designed for temperature stabilization, described in detail in Sec. 5.3.2. The laser

is pumped electrically using an injection current that enters through the DC port
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of a bias-tee (Mini-Circuits ZFBT-6GW) and is connected to the laser with RG-174

coaxial cable. The beam generated by the laser is collimated with a high numerical

aperture lens (Melles Griot type 06GLCO02, numerical aperture = 0.5) and directed

into an external cavity formed by a series of mirrors. The most distant mirror reflects

the beam back to the laser from a distance of -, 71 cm. I place a polarizing cube

and a quarter-wave plate in the beam path to control the optical feedback strength.

The A/4 plate is mounted on a rotatable stage, providing a mechanism for smooth

adjustment of the optical feedback. I also place a beamsplitter in the beam path

which directs -',30% of the laser's output out of the box through a glass plate to

the photoreceiver. This beamsplitter is placed near the laser so that the beam is

sampled immediately after it emerges from collimating lens, a configuration intended

to minimize latency in a feedback control situation.

The entire external cavity laser system is placed in a cast aluminum box, to

shield the laser from electromagnetic noise and from air currents that may disrupt

its temperature stability. To further isolate the system from noise, the components

are fixed onto a large aluminum plate that is mounted on compressed pads of a

visco-elastic acoustical-damping material inside the aluminum box.

5.3.2 Stabilized semiconductor laser

It is necessary to stabilize the temperature of the semiconductor laser to perform

consistent studies of its dynamics. It is well known that a semiconductor laser's

wavelength changes with temperature since the parameters that generally determine

the wavelength are temperature-dependent. Specifically, both the optical path length

of the cavity and the band gap of the semiconductor are sensitive to changes in tem-

perature. This tunability is an advantage in atomic physics applications, for example,

where it is desirable to operate lasers at particular atomic resonance frequencies [141].

97



mirrors

X/4
70/30 )k plate

beam
splitter

collimating Z .k
lens polarizing

______cube

\laser
______ diode

strainreliefmirs

RG-174A

bias ]D C  aluminum box

RF

Figure 5.3: Experimental layout of the external cavity semiconductor laser.
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In this nonlinear dynamics study, however, it is not the particular value of the wave-

length but rather its stability that is important.

I design and construct a temperature control system to keep the laser at a constant

temperature. The system is very effective, stabilizing the temperature to better than

1 mK, and is illustrated schematically in Fig. 5.4. The key elements of this system are

a thermistor to measure the temperature of the laser mount, a thermoelectric cooler to

change the temperature, and feedback electronics that determine the level of current

driving the cooler. The electronics are designed to force the thermistor's resistance

to match a predetermined adjustable resistance, thereby locking the temperature to

the value corresponding to that resistance.

The operation of the system is straightforward. The LM399 in the upper left

of Fig. 5.4 is a stabilized zener diode, which provides a stable reference voltage of

nominally 6.9 V that is applied to a resistor bridge. One arm of the bridge includes

the thermistor, and the other contains the series combination of a rotary switch re-

sistance (Si) and a 5 kQ potentiometer (P1) to which the thermistor resistance is to

be matched (this combination provides much finer control of the desired matching

resistance than would a single large potentiometer). The thermistor (Fenwal Elec-

tronics #121-503JAJ-QO1) has a nominal resistance of 44 kQ at 25 'C and varies

approximately as 1.47 kQ/°C. The remaining 50 kQ2 resistors in the bridge are 1%

precision metal film types.

I use a precision instrumentation amplifier (Analog Devices AD620) to measure

and amplify the voltage difference that results when the resistance of the thermistor

is not equal to the sum of S1 and P1. This signal is then sent to an integrator with

an RC constant of approximately 4 seconds. The output of the integrator drives

the base of a Darlington transistor (TIP 122, hFE , 1000) that is powered by an

independent 12 V / 1.25A supply, and drives a 1 cm2 thermoelectric cooler (Melcor
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CP1.0-17-05L) located in the base of the diode laser mount.

I include an error monitor in the circuitry to verify that the temperature of the

mount is stable. This is simply a buffer that reads the voltage from the instrumen-

tation amplifier, which is proportional to the difference of the thermistor resistance

and the preset matching resistances S1 and P1. When the temperature is successfully

stabilized, the error monitor gives a very small voltage (nominally 0.3 mV). Small

fluctuations about the operating point indicate variations in temperature with a scal-

ing factor of 0.18 mV per mK. Typically, the error signal varies ±0.15 mV, indicating

temperature stability of approximately ±1 mK.

The thermistor and thermoelectric cooler are located in the laser mount (the

remaining circuitry is contained in an external unit). This mount is designed to allow

both for effective stabilization as well as ease of collimation for the laser beam. Figure

5.5 illustrates the basic construction of the mount. There are three major pieces of

the assembly: the laser holder itself, the base, and the holder for the collimating

lens. The laser holder is a small copper piece into which the laser diode (LD) and

the thermistor (T) are inserted. It rests on the thermoelectric cooler (TEC), making

good thermal contact using a thermally conductive compound. This block is held to

the base by nylon screws to minimize direct heat transfer. The TEC cools the laser

holder, stabilizing the laser's temperature, and dumps heat into the larger copper

base. The base also supports the lens holder; they are joined by a piece of spring

steel that is pre-bent such that the lens holder is pressed against the base. The

distance from the collimating lens to the laser diode is controlled by means of a

fine-pitch adjustable screw (S) that pushes against the lens holder.

The laser mount (Fig. 5.5) and the electronics (Fig. 5.4) comprise the tempera-

ture control system. The other important piece of equipment needed to operate the

semiconductor laser is a stable, low-noise current supply. I use a design that provides
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Figure 5.5: Rear (a) and front (b) views of laser mount assembly. The thermoelec-
tric cooler (TEC) cools the small piece that contains the laser diode LD, and the
temperature is sensed with a thermistor T. The copper block at the base acts as a
heat sink. The screw S dictates the distance from the collimating lens and the laser
diode.
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accurate tuning of the drive current, as well as stable, quiet operation. The current is

provided by a FET that is controlled by a feedback loop, where the dc current level

is regulated by a voltage divider referenced to a stabilized zener diode breakdown

voltage. This design also includes protection against large current or voltage spikes,

which can quickly destroy a laser. As additional protection, 1N914 diodes are placed

in close proximity to the laser itself, preventing both forward and reverse voltage

spikes. Details of these electronics, including diagrams of the current supply and the

protection diodes, can be found in Ref. [142].

5.4 Characterization of low-frequency fluctuations

Previous sections of this chapter have introduced the basic theory of the external

cavity semiconductor laser, and the experimental apparatus I use to investigate this

system. I now characterize the LFF instability from both experimental and theoret-

ical viewpoints. The LFF dynamics are very complicated, and it is necessary to be

familiar with the instability to understand how it is affected by control perturbations.

To this end, I present experimental time series data and power spectra, as well as

computer simulations based on the Lang-Kobayashi equations. The power spectra

indicate the presence of ultrafast dynamics hidden beneath the slower power dropout

events. Numerical simulations predict the ultrafast dynamics, and are also used to

reconstruct the dynamics in phase space as presented in Sec. 5.2.2.

All experimental data representing the laser's dynamics is based on measurement

of its output intensity. As was illustrated in Fig. 5.3, a beamsplitter near the laser

directs a portion of the beam out of the aluminum box through a glass plate; this

beam is focused onto the photoreceiver, whose output is then directed to an oscil-

loscope or spectrum analyzer. The photoreceiver is a New Focus model 1537-LF,

consisting of the combination of a InGaAs Schottky photodiode housed with a low-
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noise transimpedance amplifier. This detector is specified to have a flat frequency

response to 6 GHz and has a low-frequency cutoff of 10 kHz, an ample range to study

LFF dynamics. One important experimental consideration in using this device is the

small size of the active region of the photodetector, at a diameter of 25 Am. The laser

must be focused carefully onto this spot; the frequency response of the photoreceiver

is severely degraded if the beam waist is too large, or if the detector is not in the

focal plane. Therefore, the detector is mounted on an XYZ-translation stage for mi-

cropositioning, and the sampled laser beam is focused using a lens with a focal length

of 32mm. I note that anamorphic prisms may be used to shape the beam and allow

it to be more tightly focused. However, I do not use them because they add path

length and latency in feedback control experiments, and they are unnecessary since

the lens brings the beam to a sufficiently tight focus. I limit the incident power on

the detector using neutral density filters, since its damage threshold is approximately

3 mW.

I use a digitizing oscilloscope and a spectrum analyzer to record and analyze

the photodetector output. The oscilloscope is a Tektronix model TDS680B, with an

analog bandwidth of 1 GHz (rise time of 350 ps) and a maximum sampling rate of

5 Gs/s. It has the capacity to store 15,000 data points. This oscilloscope is state-

of-the-art equipment, allowing both for excellent resolution in time and the ability

to record long time traces. I note that faster devices are available, in the form of

transient digitizers and streak cameras, but neither of these have the capability to

record the long time series needed to fully analyze the LFF system. The spectrum

analyzer is a Tektronix model 2711, with a bandwidth of 9 kHz to 1.8 GHz.

5.4.1 Power dropout events

The most prominent feature of LFF is a spontaneous, rapid decrease in the laser's
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Figure 5.6: Experimental time series showing a typical power dropout. Note the
small scale structure, evidence of faster dynamics hidden by bandwidth limitations
of the digitizing oscilloscope.

intensity followed by a slower turn-on phase during which the average power builds

up to an approximately constant level. An example of a typical dropout event is

shown in Fig. 5.6. Initially, the laser intensity is nearly constant, but then drops to

a fraction of its former level within about one nanosecond (the bottom of the graph

is not zero intensity, however). Following the catastrophic drop, the intensity builds

up to its initial level in a comparatively long time, equal to - 10 external cavity

roundtrip times (L _ 71 cm, giving a roundtrip time of about 4.7 ns).

Fig. 5.6 also illustrates some interesting details, in addition to the main features.

Most notably, there appears to be some small-scale structure, both in the steady-

state level operation and the stepwise quality of the turn-on phase. This is indicative

of the ultrafast dynamics present in the system, which are not clearly resolved due to

the bandwidth limitations of our experimental equipment. The small-scale structure

appears because the laser is actually emitting a train of pulses of width 50-200 ps,

dynamics which have been predicted [39] and experimentally confirmed recently by

105



(a 1I 17 mA

.- a

(b) I 18.5 mA
CU

Cl)
C°

.__

Cl) - (c) 1= 20 mA,"

0 500 1000 1500 2000

time (ns)

Figure 5.7: Experimental time series data illustrating the dependence of power
dropout behavior on drive current level. Increasing the current increases the average
rate at which the dropouts appear, and also changes their shape.
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Fischer et al. [40]. This pulsing behavior will be discussed later in this section.

One intriguing quality of the power dropouts is that they occur at irregular time

intervals ("interspike intervals") about some average time. This time depends on

the system parameters, such that the average interspike interval becomes smaller

as the electrical pumping increases or as the optical feedback decreases [38, 108]. I

illustrate this phenomenon in Fig. 5.7, which shows a sequence of three time series for

increasing pump currents with the optical feedback held constant. It is apparent that

the power dropouts become more frequent as the current increases; they also change

shape, appearing deeper for higher currents (the relative scales for each graph are

the same). Considerable effort has been devoted to understanding and predicting the

average interspike interval time [38, 108]. I investigate and measure the probability

distribution of interspike intervals in Sec. 5.5.

The role of spontaneous emission noise is an important question in the investi-

gation of low-frequency fluctuations. Some theories approach LFF from the point of

view that noise drives the system in a potential landscape, causing power dropouts

when the system escapes over a barrier [108] or as the result of a dynamical bistabil-

ity [124]. However, Sano [110] showed that power dropouts occur spontaneously in

simulations of the Lang-Kobayashi equations in the absence of noise. This led him

to, suggest that LFF dynamics may occur through motion on a chaotic attractor,

an idea that has been subsequently investigated by other researchers [39, 109, 122].

More recently, a comparison of Lang-Kobayashi simulations with and without noise

has shown that spontaneous emission can significantly alter the statistical distribu-

tion and shape of the dropouts [38]. Thus, we are faced with a system that requires

consideration of stochastic effects coupled with deterministic chaotic dynamics to

understand its behavior.

To illustrate the effects of noise, Fig. 5.8 shows two times series obtained by inte-
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Figure 5.8: Simulated time series of LFF dynamics illustrating the influence of
noise. Compared with the purely deterministic time series (a), the inclusion of noise
(b) decreases the maximum intensity peaks, alters the shape of the dropouts, and
changes the distribution of interspike intervals.
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grating the Lang-Kobayashi equations. Graph (a) illustrates the purely deterministic

case, whereas for graph (b) spontaneous emission is included. I use the dimensionless

form of Eqs. 5.10, 5.11 for these simulations, where the intensity is expressed as IYI2.

I integrate the equations using the same fourth-order predictor-corrector algorithm

that was used for the diode resonator studies (see Sec. 4.1.2), with a constant step-

size of 0.5 ps. The time series data is recorded after an initial transient period of

50 external cavity roundtrip times. In both graphs the pump current and feedback

strength are J/Jth = 1.01 and n = 0.3, respectively, and the physical parameters are

listed in Appendix B. It is evident through a comparison of Figs. 5.8a and 5.8b that

the addition of spontaneous noise qualitatively changes the power dropout events.

With noise, the dropouts become somewhat wider, although their falling edges ap-

pears sharper. The average interspike interval appears to change (although much

longer time series would be required to make this claim with any certainty), and the

maximum value of the intensity is lowered significantly.

A notable difference between the simulated time series of Fig. 5.8 and the exper-

imental data of Fig. 5.7 is that the intensity often approaches zero in the simulation.

This is due to the fast pulsing dynamics which are not faithfully captured in the

experimental data. To make the pulses more clearly apparent, I examine in Fig. 5.9

a short section of the time series of Fig. 5.8b at the point where a dropout occurs.

The pulses are irregular in amplitude, spacing, and width, although they do follow

a somewhat repetitive sequence with a period of 4.7 ns, corresponding to the pulse

traversing the external cavity and causing stimulated emission as it is reinjected into

the gain medium.

The fast pulses shown in Fig. 5.9 are not clearly reproduced in the experimen-

tal time series data, due to the bandwidth limitation of the oscilloscope. I note,

however, that the pulses remain quite apparent in simulations when the numerically
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Figure 5.9: Simulated fast pulsing dynamics of LFF near the beginning of a dropout
event. The pulses are short (50-200 ps wide) and have irregular spacing and height.

generated time series is convolved with a response function of a 1 GHz bandwidth

filter, suggesting that the details of the simulated pulse shape and spacing may not

be in good agreement with the experiment. The existence of the pulses is not in

question; they have been experimentally observed [40] using a streak camera. Such

equipment is not currently available to our laboratory, and although it would be very

useful for experimental visualization of the ultrafast dynamics, it is not as well suited

for studies of the power dropouts or their statistical properties. This is due to the

disparate timescales of LFF dynamics. For example, the streak camera used in Ref.

[40] could capture a single-shot trace of 6.6 ns, but this length of time is significantly

shorter than the width of the dropout itself, and is at least an order of magnitude

too small to register multiple dropout events.

Measuring the RF power spectrum is another technique that provides informa-

tion about the fast dynamics. A typical experimental power spectrum is shown in
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Figure 5.10: Typical experimental power spectrum of a system undergoing LFF.
The low-frequency noise results from the irregular power dropouts. The regu-
larly-spaced peaks are at harmonics of the external cavity, and are related to the
fast pulsing dynamics of the laser.

Fig. 5.10. The regularly-spaced peaks correspond to the fundamental frequency of

the external cavity (-212 MHz, corresponding to a cavity of -71 cm length) and

its harmonics. The logarithmic dBm power scale refers to RF power from a sinu-

soidal wave dissipated in a 50Q load, such that 0 dBm = 1 mW of RF power. To

convert from optical power to the RF dBm scale in this experimental system, a 1

mW sinusoidal fluctuation in optical power reflected from the 30% beamsplitter is

equivalent to -32 dBm, accounting for the neutral density filter and conversion gain

of the photoreceiver. The nearly constant level of the peaks suggests that additional

peaks occur beyond the range of the instrument, which would indicate the existence

of short pulses in the laser beam. The low-frequency noise that extends from dc to

about 100 MHz is a result of the irregular power dropouts themselves (this is the ori-

gin of the term "low-frequency fluctuations"). This power spectrum was captured on
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the spectrum analyzer using a 5 MHz resolution bandwidth and 1 kHz video filtering.

5.4.2 Dynamics on the attractor

Time series and spectral data provide valuable information regarding the mechanisms

of LFF. Further insights can be gained by studying the behavior of the system in the

phase space that was introduced in Sec. 5.2.2. Recall that the steady-state solutions

of the Lang-Kobayashi equations (5.4,5.5) defined a set of points (E,, AwST, N,),

where E2, AwT, and N, are the steady state values for photon density, roundtrip

phase difference, and carrier number density, respectively. These fixed points, either

modes or antimodes, reside on an ellipse in the phase space (Eq. 5.17).

It is possible to represent the simulated time series of Fig. 5.8b in terms of

equivalent dimensionless quantities, thereby generating the phase space trajectory

shown in Fig. 5.11a. The vertical axis represents the (dimensionless) carrier density

Z and the horizontal axis is the roundtrip phase difference W (s) - W (s - 0), where s

is the dimensionless time, 0 is the external cavity roundtrip time, and W is the phase

of the complex field Y where Y (s) = IY (s)I exp (iWp(s)). The trajectory shown in

graph (a) represents one complete dropout cycle, demonstrating that the dynamics

take place almost entirely within the lower left-hand quadrant of the phase plane

(note the location of the origin).

The dropout can be understood as follows. In the vicinity of point A, the system

wanders along the external cavity modes as it nears the tip of the ellipse of fixed

points, attempting to reach the maximum gain state. In this region, the antimodes

begin to draw close to the external cavity modes and come into crisis with them.

When the dynamics remain for too long near a mode that is near collision with

an antimode, the system eventually will pass too near the antimode. The unstable

antimode then rapidly drives the system away from the external cavity modes, as
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indicated by the arrow. The carrier density increases to the level associated with the

solitary laser threshold as the optical intensity goes to zero. The system subsequently

returns near the solitary operating point (the origin) and is reinjected onto the ellipse

of fixed points, indicated by arrow B. The laser again feels the effects of the external

cavity, and increases its average power as it moves along the cavity modes (arrow

C). This build-up of intensity is fairly rapid at first, but as the system approaches

point A once again, the dynamics begin to dwell for longer and longer times near a

given external cavity mode. It may "hop" back and forth between attractor ruins

(called "inverse switching" ), although the overall trend is toward the maximum gain

mode. When the system reaches an external cavity mode that is near crisis with an

antimode, the cycle is ready to repeat.

Figure 5.11b is a close-up view of the trajectory at the point where the dropout

is initiated. The attractor ruins are clearly visible. The trajectory enters from the

lower right hand side of the graph, moves along the series of external cavity modes,

undergoes inverse switching between the last two modes, and eventually experiences

the power dropout.

5.5 Distribution of interspike intervals

From the analysis of the dynamical mechanisms of power dropout events, it is clear

that an external cavity semiconductor laser undergoing LFF is an extraordinarily

complex system. There are antimodes and destabilized external cavity modes num-

bering in the hundreds, and the system has an infinite number of degrees of freedom

due to the time delay. The dynamics occur on timescales covering several orders of

magnitude, from pulses 100 ps wide to interspike intervals that can be on the mil-

lisecond scale. Furthermore, modeling its behavior from a wholly deterministic point

of view may not be adequate since spontaneous emission noise plays an important
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Figure 5.11: Trajectory of a power dropout event in phase space. Graph (a) shows
one full dropout cycle. Following the dropout (A), the system is reinjected onto the
ellipse near the solitary laser operating point (B), after which it traverses the external
cavity mode structure (C) as the average intensity rebuilds. Graph (b) is a close-up of
the region near the dropout, making the destabilized cavity mode structure apparent.

114



role, as illustrated in Fig. 5.8. To what extent is it possible to describe the behavior

of the system in a simple analytical way? I address this question in this section by

studying the probability distributions of the interspike intervals. I formulate a first-

passage time theory based on the work of Henry and Kazarinov [108] to describe the

distributions, and compare these predictions with experimental results.

5.5.1 Theoretical analysis

The probability distribution of interspike intervals is a readily measurable quantity

of the LFF dynamics that provides sensitive information about the long-term dy-

namics of the system, and may be used to constrain analytical models. The intervals

are easily extracted from experimental time series data, since the dropout features

are quite wide and therefore can be measured without especially fast and expen-

sive equipment (in contrast with time-domain visualization of the ultrafast pulses).

Unfortunately, computer simulations are of limited usefulness for this investigation,

because the fast pulsing dynamics make the LK equations quite stiff and therefore

very time-consuming to integrate for sufficient length to gather good statistics on

dropout behavior.

An alternate analytical approach was developed in 1986 by Henry and Kazari-

nov [108], which I use as a basis for my analysis. They perform a nonlinear stability

analysis of the LK equations including spontaneous emission about the maximum gain

mode (the dominant mode indicated in Fig. 5.2), describing the dynamics in terms of

fluctuations n in the carrier density about the maximum gain mode value N,. They

show that n evolves according to an equation analogous to that of a stochastically-

driven, overdamped particle moving in a one-dimensional potential well with a finite

barrier, where the coordinate of the potential function is n. A dropout occurs when

large stochastic fluctuations drive the system over the barrier. The question of when
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this noise-induced dropout occurs is a first-passage time problem, and the distribu-

tion of times may be obtained by solving the associated forward Fokker-Planck or

Kolmogorov equation [143]. Henry and Kazarinov determine an approximate solu-

tion for the average escape time rather than solving the full Fokker-Planck equation,

and find that experimental measurements [144] are in qualitative agreement with the

parameter dependences expressed in their solution. This description of LFF differs

greatly from that given in Sec. 5.4.2, in that it does not consider the dropouts to

be caused by chaotic dynamics. Instead, it assumes that fluctuations in spontaneous

emission dislodge the laser from a locally stable state, causing the dropout. The

mathematics of the approximate solution for the first-passage time problem are more

complicated and perhaps a bit foreign, so I relegate those details to Appendix C,

simply stating the results where needed in this chapter.

Henry and Kazarinov consider the LFF dynamics as a particle in a potential well.

I review their 1986 analysis here, noting that there seem to be some inconsistencies

in their theory. Starting from Eqs. 5.4 and 5.5 with the Langevin force FE (t) in-

cluded, they consider small fluctuations about the maximum gain mode (I,, Aw,, N,)

described by

E (t) = [I. + p (t)]! exp [iAwst + io (t)], (5.19)

N(t) = N 5 ±n(t), (5.20)

where p, 4, and n are small fluctuations in photon number density, phase, and carrier

density, respectively. They insert these forms into the LK equations and split the

complex field into two real equations. They also assume that fluctuations occur in

a time less than the roundtrip time in the cavity, so the reflected field takes on the

steady-state value v/ 7 exp [iAw, (t - -r)]. This leads to

= GNnI 8- 2I, [cos(i-_cos ((Di+)] -Pcos i)+ Fi(t), (5.21)
Tin Tin
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S= -_aGNn -- [sin (o± ) -+ sin 4] + F0 (t), (5.22)
2Tin

where 4) _ (wo + Aw8 ) T, and the Langevin force FE (t) has been split into phase and

intensity components, F0 (t) and F, (t), respectively. Equations 5.21 and 5.22 retain

only linear terms in p and n as expected, but also neglect Kpsin (4) + 4) (2-r,I 8 ) and

assume that rpcos (4) + ¢) /Ti-,z pcos (f) /ti, which are valid if p4 is small. Henry

and Kazarinov then expand the trigonometric terms cos (, + 4) and sin (4 + 4) to

quadratic order in 4 to find

1
i n - G (N) p, (5.23)

T1

4 aGNn--4)cosD, (5.24)
2Tin

= a~nI8 - -. (20 sin4+¢2cos4)- -cos + F1 (t), (5.25)
Tin Tin

where T = 1/r, + GNI,. Intensity fluctuations F, (t) are the dominant random force

[118], and therefore F0 (t) is ignored as well as sources of carrier density fluctuations.

The next step in the analysis requires two additional approximations. First, Henry

and Kazarinov assume that the dominant operating point is at D = 0 (corresponding

to the maximum gain mode of Sec. 5.2.2). Second, they assume that the phase adia-

batically follows the carrier density, meaning that the decay rate of 4 is much greater

than the rate at which n changes. This approximation leads to ¢ = aGN-inl/2K by

setting 4 = 0 in Eq. 5.24. They then manipulate Eqs. 5.23 and 5.25 to obtain a

single second-order differential equation in n. At this point in the derivation they

retain n2 terms, despite keeping only linear terms in p and n previously. This leads

to

(Q2 (+ + a--2- (2 )Tn 2+ G2 GNTnn - G (N) FI (t), (5.26)

where Q = N/G (N,) GNI is the relaxation oscillation frequency of the solitary

laser. Equation 5.26 may be interpreted as a stochastically-driven particle undergoing
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damped motion in an anharmonic well U(n). Henry and Kazarinov then assume that

the ii term is negligible, which requires that the damping is strong. The resulting

equation can be written as the Langevin force equation

aU
A= -- + F (t), (5.27)

where the potential U (n) has the form

U (n) = - . (5.28)

The barrier of height U (n.) = 7n2/6 is located at n,, and 7 is interpreted as the

characteristic sliding rate in the well. The random force F (t) is simply a rescaled

version of F! (t), with several constants combined in the diffusion coefficient D. It

obeys

(F (t) F (t')) = 2D6 (t - t'), (5.29)
(~~~ N2 i

D = G(N) - G(Ns) Ti R, I (5.30)K 2  K I 2  ps

where RP is the spontaneous emission rate [134].

My goal is to obtain a first-passage time probability density C (n', t) from Eq. 5.27,

that is, the probability that the particle will be driven over the barrier between the

times t and t + dt given that it was initially at the location n'. The most convenient

approach to this problem is to consider the moments of the integral first-passage time

distribution, that is, the probability 4P (n', t) that the first passage time is less than

t given that the initial position was n' [145, 146]. The derivative of 0 (n', t) with

respect to t returns the usual first-passage time probability density C (n', t). The

equation describing the time evolution of 4 (n', t) is the Kolmogorov equation

04 (n', t) / 04 (n', t) a2 (n') 24' (n', t)

at =a(n') On' + 2 0n 2  (5.31)
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where a, and a2 are infinitesimal transition moments. Eq. 5.31 is described in more

detail in Appendix C. Using it, I find an approximate expression for the first passage

time distribution,

C(n/)t) - exp,-- , (5.32)
TFP ( F_ )

where the mean first-passage time -rFp is approximately

TFP - exp (3

and D = D/2U (no) = 2D/-yn 2 is a dimensionless diffusion coefficient (D is defined

in Eq. 5.30).

It may seem surprising that C (n', t) is independent of n'; this points to the ap-

proximations made in its derivation. Eq. 5.32 is valid only when the following two

criteria are met: the initial location of the particle must not be close to the barrier,

such that n (t = 0) < no (i - V/ ); and the dimensionless diffusion coefficient must

be small D < 1. The reasons for these stipulations are explained in Appendix C.

It is important to establish the connection between the theoretical results and

the measured experimental quantities. Henry and Kazarinov addressed this need,

showing that the mean first passage time can be expressed as

TFp= ( exp - +--], 5.34)

where P is the laser power, P is the laser power with feedback at the solitary thresh-

old current Jth, and AC/C = (Jt - Jth) /Jth is the relative reduction of threshold

current due to the optical feedback. All these values may be experimentally deter-

mined. The parameters a and b represent poorly-known laser-specific parameters,

which I find via fits to experimental data.

This concludes the theoretical formulation of power dropout events as a first-

passage time problem. It is appropriate at this time to consider exactly how these
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results reflect the interspike intervals that occur in the experimental system. The

potential barrier described by Eq. 5.28 is designed to be valid near the maximum

gain mode, and the first-passage time distribution expresses the likely time at which

the system will escape over the barrier. However, recalling Fig. 5.11, we know that

the dynamics leave the phase space vicinity of the maximum gain mode following a

dropout, whereupon they return near the solitary laser state before reentering the

external cavity mode structure. These effects are not explicitly taken into account by

the Henry and Kazarinov model, but experiments indicate that we must consider the

characteristics of the reinjection process. Therefore, I make an explicit distinction

in notation between the theoretically calculated first-passage time ( (n, t), and the

experimentally measured interspike interval probability distribution 77 (t). I compare

experimental results with the theoretical predictions to investigate these issues in the

following section.

5.5.2 Comparison with experimental results

The theoretical analysis I have described provides expressions related to several mea-

surable quantities of the interspike intervals. The mean first-passage time is expected

to scale with experimental parameters according to Eq. 5.34, and an approximate

solution for the first-passage time probability (Eq. 5.32) predicts an exponentially

decreasing distribution, scaled by the mean time. I now compare these theoretical

expectations with experimental data.

I measure average times and probability distributions for interspike intervals, hold-

ing the optical feedback fixed for several levels of the drive current. The process

involves selecting an optical feedback level at which the laser operates in the LFF

regime. I set the drive current at an initial level and observe time series from the pho-

toreceiver on the digitizing oscilloscope, setting the sampling rate such that several
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dropouts are recorded within a single 5000-point trace. I then use a program written

in LabVIEW to automate the data acquisition process. This program downloads a

single time series trace from the oscilloscope to a computer via GPIB, and extracts

the interspike intervals in sequence using a peak-finding algorithm. The program

saves these intervals, and then reads another time series from the scope, repeating

the process for a predetermined number of runs (typically -500). The program also

records a cumulative histogram of the interspike intervals that are collected. At the

conclusion of the run, I increment the drive current level and repeat the process.

I find that it is important to test the peak-finding algorithm prior to commencing

an acquisition run. The peak finder requires two parameters from the user: peak

threshold and duration. A peak (inverted dropout) is determined to have occurred

if the measured data exceeds the threshold value and remains above that value for

the time specified by the duration parameter. A new peak may not occur until the

data has dropped back below the threshold level. This algorithm provides needed

flexibility, since the sampling rate must be changed over the range of operating con-

ditions, balancing good time resolution with the need to capture several dropouts per

time series. Another feature of the oscilloscope that improves the consistency of the

peak-finder is the option to reduce the front-end analog bandwidth from 1 GHz to

250 MHz. This still allows for good time resolution, especially when the time between

dropouts is fairly long, but eliminates most of the short-timescale fluctuations caused

by the fast pulsing dynamics.

Following this procedure, I measure the mean times Til of the interspike intervals

(to distinguish from TFp , the mean first passage time) and their probability distribu-

tions 7 (t). Fig. 5.12 shows rjl plotted as a function of drive current. More than 5000

interspike intervals are recorded for each point, leading to the rather small statistical

error bars. The dashed line is generated from fitting the form of Eq. 5.34 to the
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Figure 5.12: Average times between power dropout events as a function of drive
current. The error bars represent only statistical errors. The dashed line is a fit to
the experimental data using the functional form of Henry and Kazarinov (Eq. 5.32).

experimental data, which gives values for the free parameters a = 19.4 ps-1 , and

b = 5.73 x 10 - 4 . For this data set, I adjust the quarter-wave plate in the external

cavity (see Fig. 5.3) such that the effective threshold is lowered to Jat = 14.5 mA

from a solitary level of Jth = 17.0 mA, corresponding to a relative threshold reduction

AC/C = 0.147. I note that the dimensionless diffusion coefficient can be determined

from these parameters; its value is D = 0.092 for P/P, = 1, meeting the condition

that D < 1 for Eq. 5.32 to be valid.

Additional interesting information can be gained from the same data runs by

plotting the probability distributions of the interspike intervals 71 (t). I plot in Fig.

5.13 an example of an experimentally measured distribution, the J = 17 mA case with

the same system parameters as were used in collecting the mean times. This data is

shown by the solid line (the dashed and dot-dashed lines are theoretically calculated

distributions, discussed later). The data is normalized by the total number of counts
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Figure 5.13: Comparison of experimental interspike interval probability distribution
and theoretical first-passage time distributions.

and the width of the histogram bins to reproduce q (t). The general features of these

distributions consist of a region near t = 0 where the probability of a dropout is

essentially zero, followed by a rapid rise to a peak value, which then exponentially

decays as t increases. I also find additional structure for the cases when the drive

current is well above solitary threshold. It is clear that the experimentally measured

histograms have a more complicated structure than is expected from Eq. 5.32.

One probable reason for the disagreement lies in the interpretation of how the

Henry and Kazarinov theory is related to the experimentally measured interspike

intervals, as was mentioned briefly at the end of the previous section. The distribution

(n, t) of Eq. 5.32 describes the likelihood of the system crossing the potential barrier

(causing a dropout) at a given time, assuming that it is initially located at n = 0.

Recalling Fig. 5.11, the dynamics then are rapidly driven from the region of phase

space in which the external cavity modes are located before being reinjected near

the middle of the ellipse, a process which occurs in about one roundtrip time. One
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plausible interpretation of this process is to consider the system to be reinjected

into the well as soon as it reaches the ellipse, in which case the interspike interval

distribution should be very nearly equivalent to that of the first passage time, that

is, r7(t) " (n,t).

In contrast, an alternate interpretation is to say that the system enters the well

only when the dynamics are in the vicinity of the maximum gain mode, after travers-

ing much of the ellipse. In this situation, we must carefully distinguish between C (n, t)

and 7 (t). Specifically, the interspike interval distribution will include a reinjection

time t, which may be a function of the laser parameters. The proper expression for

7 then becomes q (t) = (n, t - t,), with the understanding that C may have nonzero

values only if its time argument is positive. In this case, the average times are related

by TFP - 7"11 - tr.

The distributions obtained from these two interpretations are plotted in Fig. 5.13.

The dashed line indicates the approximate analytical solution assuming a negligible

reinjection time t,, using the measured value for the mean time of 1,192 ns. The

maximum height and the long-term decay predicted by the theory are in question-

able agreement with the experimental distribution. The dot-dash line represents the

distribution obtained by assuming that a significant reinjection time exists prior to

the system entering the well. This plot gives a better qualitative reproduction of the

major elements of the distribution shape, and the maximum height and exponentially

decaying tail are in better quantitative agreement. This change of shape reflects the

adjustment of the mean time -rFp = TrI - t,, which alters C (n, t) according to Eq.

5.32. The value of tr is determined empirically, and is taken to be the point at which

the experimental distribution first reaches one percent of the maximum height. For

the data shown, this time is 260 ns.

From Fig. 5.13, it is apparent that q (t) = (n, t - t,) gives the best fit to ex-
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Figure 5.14: Overlay of multiple power dropouts, illustrating the relevance of the
reinjection time tr. The average laser intensity has essentially recovered to its level
prior to the dropout after t, = 260 ns.

perimental results. However, the agreement still leaves much room for improvement,

particularly in that the theoretical distribution rises to its maximum much more

rapidly than the experimental data. It is useful to check whether the theoretical

discrepancies described above are inherent to the Henry and Kazarinov formulation

or whether they result from the approximations underlying the derivation of Eq.

5.32. As a test of this idea, I numerically integrate the Kolmogorov equation for the

integral first passage time 0 (n, t) using the calculated value of D1 and differentiate

the result to find C (n, t). The numerically calculated distribution accurately repro-

duces the shape of the analytical solution, so the source of the discrepancies is indeed

elsewhere.

The meaning of the reinjection time t, can be explored by close examination

of experimental time series data of power dropouts. In Fig. 5.14, I plot several

dropout events on the same graph for the case where P/P 1 = 1, illustrating that
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the slow recovery process is essentially the same for all events for a given set of

laser parameters. Note that tr = 260 ns, corresponding to the region of low dropout

probability in Fig. 5.13, agrees well with the time required for the average power

to return to the level it had just before the dropout occurred. This supports the

interpretation that the system only reenters the well after the dynamics have traversed

the ellipse and reached the vicinity of the maximum gain mode, and that a complete

model for q (t) will require an understanding of the reinjection dynamics.

I have demonstrated that the Henry and Kazarinov theory with a simple ad-

justment for the reinjection dynamics yields a reasonably accurate prediction of the

distribution 7 (t) for the case when the P/P 1 = 1 and the relative threshold reduc-

tion is (Jext - Jth) /Jth = 0.147. However, I find that q (t) changes qualitatively as

the drive current for the laser increases. Fig. 5.15 shows such distributions for six

different values of P/ 1 , plotted with C (n, t - tr) represented by the dashed lines.

The histograms corresponding to values of the pump current near solitary threshold

are represented by graphs (a) and (b). These two have a similar shape, beginning

with an interval of essentially no counts, followed by a rapid rise to a peak value and

an exponential decay. The agreement between the experimental 'q (t) and C (n, t - t,)

worsens as the drive current increases, shown in graphs (c) and (d), as the shape of

the exponential tail begins to show large errors. At still higher drive currents, in-

creased structure in the experimental histograms becomes apparent, and the simple

theory no longer captures the main features of q (t), as shown in graphs (e) and (f).

The probability distributions shown in Fig. 5.15 demonstrate that the dynam-

ics governing the power dropout events are more complex than the theory predicts.

One error common to all six cases is that the theory predicts a much sharper ris-

ing edge for the distributions than is found experimentally. This could possibly be

explained by recalling the small-scale structure of the phase space. The laser dy-
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Figure 5.15: Experimental and theoretical interspike interval probability distribu-
tions, for increasing power levels with the optical feedback level held constant. The
dashed lines represent C (ni, t - t,) . The agreement is clearly best at lower powers.
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namics must hop from one external cavity mode to another as it moves from the

middle of the ellipse toward the maximum gain mode following a dropout event.

Mode-hopping in external-cavity lasers has been considered by Lenstra and Mork et

al. as a stochastically-driven particle moving in a single potential well with multi-

ple minima, where each local minimum corresponds to a quasistationary laser mode

[126, 147]. The stochastic nature of this process could have the effect of spreading out

the reinjection times. Another possibility may be to allow the shape of the potential

well to vary, perhaps depending on the location of the dynamics in phase space or

on the time the particle has been in the well. An additional unexplained result is

the appearance of considerable structure in q (t) as the power level is increased. The

peculiar bimodal structure of graph 5.15f, for example, may indicate that there are

two different phase space locations at which the dropout may occur.

In this chapter I have provided a general introduction to external cavity semi-

conductor lasers, explaining the important features of the Lang-Kobayashi equations

that describe them and the basic elements that govern their dynamics. I have de-

scribed the experimental apparatus that I use to investigate low-frequency fluctua-

tions, and shown experimental and theoretical results to elucidate the mechanisms

of power-dropout events. Finally, I have studied the statistics of the interspike in-

tervals, finding that they can be reasonably described in some regimes by a modified

first-passage time theory based on the work of Henry and Kazarinov. In the next

chapters, I move on to the question of how this highly complex instability responds

to control perturbations.
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Chapter 6

Open-Loop Regulation and Entrainment
of Power Dropout Events

In the last chapter, I introduced the external cavity semiconductor laser and described

in detail the LFF instability occurring in this system. The focus of this chapter is to

determine how LFF responds to control perturbations. Specifically, I apply open-loop

control in the form of a sinusoidal perturbation to the drive current while the laser

system is in the LFF regime. This study represents the extension of open-loop control

research to a very fast and complex system; previous experiments have focused on

low-dimensional systems, such those by Ciofini et al. [65, 148] on a CO 2 laser with

modulated losses. Liu et al. [149] have studied theoretically the technologically

important high-frequency injection technique for reduction of relative intensity noise

in external cavity diode lasers, stimulating further interest in semiconductor laser

experiments.

Open-loop perturbation of LFF dynamics is also interesting from the viewpoint

of stochastic resonance. Stochastic resonance is a phenomenon in which noise in

a nonlinear system may enhance a weak periodic input [150, 151]. There is a wide

range of natural frequencies present in the LFF system, from GHz scale pulsing to kHz

scales associated with interspike intervals. Furthermore, spontaneous emission noise

is present and known to be an important factor in the dynamics. Thus, stochastic

resonance effects may become important in my results.

Regarding control, there are many possible goals, the usefulness of which may

depend on the application being considered. In some cases, full stabilization of an

unstable steady state may be desired, suppressing both power dropouts and picosec-
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ond pulses. In others cases, the frequency components attributed to the short pulses

(at the harmonics of the external cavity resonance) may be well above the charac-

teristic rates in the application, so the elimination of the power dropouts may be all

that is required. Finally, it may suffice to simply regulate the occurrence of the power

dropouts rather than suppress them, eliminating the broad low-frequency noise in the

system.

In this chapter I begin with a short discussion reviewing open-loop control in lasers

and its implementation for my system, after which I present experimental results

obtained by applying the modulation. One important result is that the dropouts can

be entrained with a low-frequency perturbation (- 20 MHz) such that one power

dropout occurs per drive cycle. I also find that higher-frequency modulation has

the effect of generating a comb in the interspike interval distribution, indicating that

the dropouts occur preferentially at times corresponding to the period of the driving

signal. This preference disappears, however, when the driving frequency is set equal

to that of the cavity resonance.

There is a complicated dependence of the mean interspike time Tr1 on the per-

turbation's frequency and amplitude. The most common result is that the average

rate of dropouts increases. However, a sufficiently strong, high-frequency modulation

can drive the system out of the LFF regime into a behavior similar to "coherence

collapse," such that fully-developed dropouts are no longer recognizable. Another

unusual result arises when the modulation is at the resonant frequency of the exter-

nal cavity; in this case, rjj is unchanged. I note that I find no modulation frequencies

that have the effect of fully eliminating or suppressing the instability in this study, nor

do they increase -r, a result that would indicate the dropouts are being suppressed.
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6.1 Open-loop control

Open-loop control is a technique that is relatively easy to implement in experimental

systems, is easily adapted for high-speed operation, and has been successful in altering

the dynamics of unstable laser systems. Recalling the discussion of section 2.2.1,

an accessible control parameter is adjusted about its nominal value by a periodic

signal in open-loop control. The control signal is usually in the form of a sinusoidal

perturbation, and is generated without regard for the current state of the system.

This independence of the control signal from measurement of the system dynamics is

partly responsible for the high-speed capabilities of this approach. That is, generation

of the control signal does not depend on real-time measurement and processing, and

latency is not a consideration.

I pursue this method of control both for its high-speed applicability and because it

has been proven successful in several previous laser studies. For example, researchers

have found that a chaotic CO 2 laser with modulated losses can be entrained to

a periodic orbit using small sinusoidal perturbations [41, 65, 148]. Also, I have

studied the effects of subharmonic perturbations on a modulated Nd-doped fiber

laser [44, 152] in research not included in this thesis. Many researchers have studied

modulation effects in semiconductor laser systems as well. For example, it is well

known that high-frequency modulation reduces the relative intensity noise in external

cavity diode lasers where the cavity is short (- 10 cm) [153]-[155]; these studies have

more recently been considered from the chaos control viewpoint [42].

The apparatus required to implement open-loop control in my experimental sys-

tem is very simple. All that is required is a function generator (Tektronix SG503)

and a bias-tee (Mini-circuits ZFBT-6GW) with which to add the modulation to the

dc component of the drive current. The injection current produced by the function
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Figure 6.1: Frequency response of solitary laser to external modulation applied
through the bias-tee. The laser response is normalized to one at 40 MHz.

generator is frequency-dependent, and therefore it is necessary to calibrate the re-

sponse of the solitary laser to the applied voltage at the bias-tee. There are two issues

to consider: the conversion from applied voltage to drive current, and the frequency

dependence of that relationship. To address the first issue, I begin by measuring the

output power of the solitary laser as a function of injection current. I then measure

the change in optical power induced by a low-frequency modulation of known am-

plitude, thus providing a reference level for the voltage-to-current conversion. For

reference, a 40 MHz sinusoidal voltage applied to the bias-tee results in a change of

laser current at a rate of about 0.032 mA per mV. I then use the tracking generator

of the spectrum analyzer to measure the frequency dependence of the laser's response

(the response of the photoreceiver is specified to be flat to several GHz). This fre-

quency response is shown in Fig. 6.1, where the laser response is normalized to unity

at 40 MHz, the reference given above.
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Figure 6.2: The effect of weak 19 MHz modulation on power dropouts. The dropouts
still occur and have the same general shape for both the (a) unperturbed and (b)
modulated behavior.

6.2 Low-frequency modulation

I begin investigating modulation effects in the low-frequency regime. The perturba-

tion frequency is 19 MHz, although most of the effects described in this section occur

to varying degrees in a region about that frequency, nominally from 10 - 25 MHz.

The frequency is chosen on empirical grounds to be 19 MHz because the threshold

for entrainment occur at the lowest drive amplitude for this frequency. I first show

the effects of weak perturbations, demonstrating that the probability distribution

of the interspike intervals is a sensitive measure of the presence of the modulation.

Subsequently, I show that stronger perturbations can entrain effectively the power

dropouts such that one dropout occurs every (or every other) drive cycle.

6.2.1 Sensitivity to weak driving
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The effect of weak pump current modulation on the power dropouts is not re-

markable from examination of a time series of the laser's intensity, as illustrated in

Fig. 6.2. Graph (a) displays the behavior of the system in the absence of perturba-

tions. The mean interspike interval time 1 IH in this case is about 600 ns. Graph (b)

shows the same system when a 10 mVp modulation at 19 MHz is added to the pump

current, producing a modulation amplitude of about 0.7% of the dc pump current.

A small oscillation can be seen in the average power level between dropouts, but it

appears quite small compared to the depth of a dropout. The shape of the dropout

is the same as in the unperturbed case. The system parameters are: drive current 22

mA, relative threshold reduction AC/C = 0.176 (see Eq. 5.32), and P/P 1 = 2.07.

In contrast, the presence of such a modulation has a dramatic effect on the proba-

bility distribution of interspike intervals q (t), as illustrated in Fig. 6.3. It is important

to be aware of exactly what these graphs represent; they show the relative frequency

of occurrence of times between individual power dropout events. To measure these

individual intervals from a given time series, the data analysis program triggers on

the downstroke of the first dropout and calculates the time that elapses until the

next downstroke occurs. It then uses the second event as the initial time and re-

peats this process until the end of the time series is reached. Graph (a) shows q (t)

for the system parameters given above with no modulation. Graph (b) shows the

probability distribution corresponding to a much longer time series with the same

system parameters as Fig. 6.2b, with a modulation of 10 mVp, at 19 MHz. The

change in the appearance of q (t) is striking; the smooth distribution has become a

comb, with peaks separated in time by multiples of the modulation period (- 53 ns).

Interestingly, the overall envelope of the distribution is not drastically changed; the

mean time TII is decreased from 719 ± 9 ns to 559 ± 6 ns, assuming only statistical

errors.
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Figure 6.3: Probability distributions 7 (t) for interspike intervals when a 19 MHz
modulation is applied for various amplitudes. Weak modulation shifts the distrib-
ution and causes a comb to appear with peaks occurring at multiples of the drive
period. At sufficiently large amplitudes, q (t) is collapsed to a single peak, indicating
a regular appearance of dropout events.
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The remaining graphs of Fig. 6.3 illustrate the dependence of 77 (t) as the ampli-

tude of the modulation is increased. The mean time 7"11 is reduced (note the changes

in scale) and fewer peaks appear in the distribution. Graphs (e) and (f) show two

particularly interesting cases, for which the interspike intervals occur in a narrow

region near a single dominant time. In graph (e) this time is 105 ns, corresponding

to twice the period of modulation, and in graph (f) it is 53 ns, exactly the period of

the modulation. This indicates that the dropouts are occurring at regular intervals,

a very different behavior from that of the unperturbed system. I examine these cases

carefully in the following section.

6.2.2 Entrainment of dropouts

I have shown that the interspike intervals occur at essentially a single time if the

modulation amplitude is sufficiently large, as illustrated in Fig. 6.3e and f. This

indicates that the irregular, probabilistic timing of the interspike intervals is converted

to a more periodic behavior. This effect is illustrated by the time series shown in Fig.

6.4. As before, graph 6.4a shows the unperturbed case for reference, using the same

system parameters as in the previous section. Graph 6.4b shows the case where the

interspike intervals occur near 105 ns only (see Fig. 6.3e), clearly demonstrating that

the modulation has entrained the power dropout such that one event occurs every

two drive cycles. The applied modulation Vp = 110 mV corresponds to a current

modulation amplitude of 1.76 mA, or 8% of the dc current level. Graph 6.4c illustrates

the behavior of the system when the interspike intervals occur only near 53 ns, the

period of the modulation. In this case, one dropout appears every drive cycle. For

graph 6.4c, Vp = 190 mV, corresponding to a current modulation amplitude of 3.04

mA (14% of the dc current level). The frequencies associated with this entrainment

are comparable to the relaxation oscillation frequency of the external cavity laser,
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Figure 6.4: Experimental time series of the laser intensity illustrating entrainment
of power dropouts. Graph (a) shows dynamics of the unperturbed system, while (b)
and (c) illustrate entrained dynamics. The current modulation amplitudes for (b)
and (c) are 8% and 14% of the dc level, respectively.
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which I calculate from the Henry and Kazarinov model to be 2.5 MHz.

Some understanding of how this entrainment comes about can be gained from a

numerical study of the dynamics of the modulated system in phase space. Fig. 6.5

compares one representative simulated dropout event in phase space (a) with four

dropouts occurring in sequence when current modulation is included (b) such that

the simulated dynamics show one-to-one entrainment. These graphs show that the

19 MHz current modulation restricts the region of phase space in which the dynam-

ics occur. Specifically, the modulation forces the dropout to occur long before the

dynamics have reached the neighborhood of the maximum gain mode. The entrained

dropouts do not all occur at precisely the same point on the ellipse despite the in-

terspike intervals being almost identical, possibly due to the probabilistic quality of

dynamics as the system moves along the external cavity modes. The system parame-

ters used in this simulation are J/Jth = 1.02 and K = 0.3. The modulation amplitude

in these simulations is 2% of the solitary threshold current value, smaller than that

of the experiment, and is included in the equations as a direct modification of the

pump term.

It is interesting to note that entrainment of the power dropouts does not elim-

inate the fast pulsing dynamics of the laser, evident from the strong fluctuations

still present in the carrier density in Fig. 6.5. This can be seen experimentally by

examining the power spectra and noting that strong peaks at multiples of the cavity

roundtrip frequency are still present. Fig. 6.6 compares the RF power spectra of

the unperturbed system with the two cases for which the dropouts are entrained.

Graphs (a)-(c) emphasize the low-frequency response, with a 5 kHz resolution band-

width and 3 kHz video filtering. In graph (a), the low-frequency noise attributed to

the sporadic dropout behavior is apparent from 0 - 100 MHz, and the fundamental

cavity resonance frequency at 212 MHz is clearly visible. Graph (b) corresponds to
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Figure 6.5: Simulated phase space trajectories of the unperturbed (a) and entrained
dynamics (b) of the LFF system. Graph (a) shows a single typical dropout event,
and (b) shows four dropouts in sequence. The entrained dynamics occupy a limited
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Figure 6.6: Experimental power spectra of the unperturbed and entrained dynamics.
Graphs (a) and (d) show the spectra of the unperturbed system, (b) and (e) show 1:2
entrainment, and (c) and (f) show 1:1 entrainment. The entrained dynamics exhibit
reduced low-frequency noise, but the high-frequency features are not suppressed.
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the conditions of Fig. 6.4b, where one dropout occurs every two drive cycles. The

first peak occurs at 9.5 MHz, corresponding to one-half of the drive frequency. Graph

(c) is the power spectrum corresponding to the one-to-one entrainment illustrated in

Fig. 6.4c. In this case, the first peak occurs at f = 19 MHz. Graph (c) also clearly

shows that the low-frequency noise is greatly reduced when the dropouts are en-

trained. Finally, the sequence of graphs (d)-(f) show the same progression as (a)-(c)

over the full range of the spectrum analyzer (1.8 GHz). The peaks at the harmonics

of the external cavity resonance frequency are significantly broadened but are by no

means eliminated, indicating that the fast pulsing dynamics persist in the presence

of the 19 MHz modulation.

6.3 High-frequency modulation

In addition to the low-frequency entrainment study, I also investigate the response

of the external cavity semiconductor laser system to higher frequency perturbations.

As I mentioned at the beginning of this chapter, almost any modulation frequency will

cause the dropouts to occur more frequently, that is, r'j decreases. This is illustrated

in Fig. 6.7, where I compare representative time series from the (a) unmodulated

system and the system when (b) 230 MHz and (c) 120 MHz modulations are added

to the pump current. It is apparent that the mean interspike interval is shorter in

the presence of the perturbations. However, it also seems that the dynamics of the

dropouts may be changed in other ways; note the appearance of regions in graph (c)

where the dropouts follow one another closely, sometimes in short bursts. The ap-

parent irregularity of the dropout depths is primarily due to a reduced sampling rate

(1 Gs/s) of the oscilloscope used to capture these time series. The laser parameters

are: drive current 20.5 mA, AC/C = 0.147, and P/P 1 = 1.96. The sinusoidal signal

is applied such that the current modulation amplitude is about 0.38 mA, or 1.9% of
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Figure 6.7: Experimental time series of laser intensity comparing the (a) unper-
turbed system with the system when a 1.9% current modulation is applied at (b)
230 MHz and (c) 120 MHz. The high-frequency modulation increases the average
dropout rate, and can induce rapid sequences of dropouts (c).
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the dc level.

The probability distributions q (t) of the interspike intervals is a sensitive indicator

of the presence of high-frequency modulation and altered dynamics, just as it was for

the low-frequency case. In Fig. 6.8, I show q (t) for several different frequencies while

the current modulation amplitude is held constant. The system parameters are the

same as for Fig. 6.7. As usual, graph (a) displays q (t) for the unperturbed system,

and graphs (b) through (f) show the experimentally measured distributions with the

modulation applied. Several interesting features are immediately apparent. First, for

all cases with modulation except f = 212 MHz, the probability distribution develops

a comblike appearance, much like Fig. 6.3b, where the spacing between the spikes is

equal to the period of the drive. Thus, the power dropouts are forced to occur only

at intervals that are integral multiples of the modulation period. I measure these

histograms using a 1 ns bin size to provide sufficient resolution. Another interesting

feature of these probability combs is that the overall envelope of the distribution

develops a second peak at short times (50 - 100 ns) for certain cases, such as graphs

(b) and (f). This indicates that the dropouts are likely to appear in rapid succession,

the case illustrated by the time series of Fig. 6.7c. Finally, the modulation frequency

f = 212 MHz (graph 6.8d) leads to a surprising result. It does not appear to affect

the distribution at all! The values for r"11 are the same within statistical uncertainty

(unperturbed 7ii = 436 ± 5 ns, modulated Tl = 431 ± 1.5 ns) and the shapes of

,q (t) are also almost identical. This phenomenon is as yet unexplained, although it

is almost certainly related to the fact that 212 MHz is the fundamental frequency of

the external cavity.

A first step in understanding the high-frequency modulation results is to repro-

duce the observed behavior using numerical simulations. The two simulated time

series shown in Fig. 6.9 show the evolution of the output power if the system is
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Figure 6.8: Experimental probability distributions q (t) of interspike intervals un-
der high-frequency modulation of fixed amplitude (1.9% of dc current) and varying
frequency. The modulation induces a comb in q (t) except when the frequency corre-
sponds to the external cavity resonance (d). In some cases (b), (f) a feature appears
at small interspike times, indicating a significant probability of power dropouts oc-
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Figure 6.9: Simulated time series of laser intensity showing unperturbed behavior
(a) and increased dropout rates when a 230 MHz modulation is applied to the pump
current (b).

(a) unperturbed or (b) driven with a 230 MHz modulation. The application of the

open-loop signal induces an increased rate of dropouts. The system parameters for

these simulations are J/Jth = 1.02 and n = 0.4, and the modulation amplitude is 1%

of Jth. I note that simulations for which the frequency is set to be 212 MHz shows

no qualitative change in the behavior of the dropouts (not shown), also agreeing

with experimental findings. Future work in the analysis of the response of the LFF

dynamics to open-loop control will be to further extend the Henry and Kazarinov

theory to include a time-dependent term representing the external modulation, and

thereby calculate q (t) for this system.

As with the low-frequency modulation, an examination of the dynamics of Fig.

6.9 in phase space also yields additional insight. Such phase space representations are

given in Fig. 6.10, where graph (a) shows the unperturbed dynamics over a period of

500 ns, and graph (b) shows the trajectory when the 230 MHz modulation is added.
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dynamics onto the ellipse before the roundtrip phase difference reaches zero.
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The high-frequency modulation limits the phase space regime in which the dynamics

take place, similar to the behavior shown in Fig. 6.5 with low-frequency entrainment.

There is a subtle difference, however, in that the high-frequency perturbation seems

to limit the region of phase space at both large and small values of the roundtrip

phase difference. That is, it appears that the dynamics are reinjected onto the ellipse

before the phase difference goes to zero. Numerical experiments show that this effect

is increased at greater drive amplitudes, further decreasing the range. For example,

all the phase space dynamics occur between values of -700 and -1400 radians for the

roundtrip phase difference if the 230 MHz drive amplitude is increased to 4% of Jth.

The power dropout events are no longer clearly defined in this regime, as the system

rapidly moves on and off the ellipse.

In this chapter I have studied the effects of open-loop control perturbations on

the dynamics of LFF. I have shown that a moderately strong 19 MHz modulation

applied to the pump current can eliminate the randomness in timing of interspike

intervals, collapsing the probability distribution (t). The dropouts can be entrained

in 1:1 or 1:2 ratios with the drive, and numerical simulations indicate that the mod-

ulation forces the dropout to occur well before the dynamics approach the maximum

gain mode. When entrainment occurs, the low-frequency noise usually present in the

system is greatly reduced. If the modulation is not strong enough to induce entrain-

ment, 7 (t) is still a sensitive indicator of the presence of the modulation, showing

that the interspike intervals will occur at integral multiples of the drive period. Weak

high-frequency modulation has a similar effect on 7 (t), generating a comb in the dis-

tribution, as well as restricting the area in phase space in which the dynamics occur.

However, there remain unexplained effects of the high-frequency modulation, such as

the appearance of closely-spaced dropouts in some cases and the disappearance of

the comb in 71 (t) when the modulation frequency exactly corresponds to the external
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cavity resonance frequency.

It is instructive to consider why no modulation frequencies were able to suppress

the power dropout events. Much of the difficulty may be due to the complexities

inherent to the system. For example, the external cavity semiconductor laser is very

high-dimensional, in contrast with laser systems in which open-loop control produces

entrainment of an orbit, such as the CO 2 laser [65, 148]. In addition, the role of

spontaneous emission is very important in semiconductor lasers, but its influence is

not fully understood in this system. Another observation is that success of failure

of open-loop control is known to be highly dependent on the specific form of the

dynamical system [67]; it may be that the injection current, while easily accessible,

is the wrong variable to perturb. From observation of the dynamics on the attractor,

the instability occurs rapidly along the direction of the carrier density. The insta-

bility may be suppressed more effectively by perturbing a different variable such as

the phase of the slowly-varying electric field, which could be accomplished by vary-

ing the effective cavity length using an electro-optic modulator. This concludes my

investigation of open-loop control, and in the next chapter I present some brief re-

sults describing my preliminary attempts at feedback control of a steady state of the

external cavity semiconductor laser.
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Chapter 7

Attempts to Stabilize an Unstable Steady
State of an External-Cavity
Semiconductor Laser

This chapter presents my attempts to stabilize the LFF system using a true closed-

loop feedback signal, in contrast with the open-loop perturbations used in the previ-

ous chapter. I use a high-pass filter control protocol, using the laser intensity as the

measured system variable and the pump current as the accessible control parame-

ter. This method is designed to stabilize an unstable steady state (USS), a desirable

behavior that decreases noise and improves the laser's coherence properties. This

experiment is at the forefront of high-speed control, representing an attempt to con-

trol an instability that is orders of magnitude faster than that of the 10 MHz diode

resonator, the fastest chaotic system controlled by feedback to date. It is also a much

more complex system, and it is not clear what the most relevant timescales will be.

Specifically, the falling edge of the power dropout (duration , 1 ns) may be the most

important, but it is also conceivable that successful control may have to address the

ultrafast pulsing dynamics, increasing the frequency scale to several GHz.

In this chapter I explain the high-pass filter feedback protocol, and show how it

can be interpreted as a limiting case of ETDAS control of unstable periodic orbits.

I then illustrate how this technique can be implemented in the laser system. Exper-

imental results show that the feedback affects the system by changing the shape of

individual power dropouts and modifying the probability distribution of the inter-

spike intervals, but it is unsuccessful at stabilizing USS's. I present experimental data

for the probability distributions, as well as time series illustrating how the dropout
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shape is altered by the feedback. I conclude by discussing possible reasons for the

ineffectiveness of the control and methods that may improve the results.

7.1 High-pass filter control

I apply high-pass filter control to attempt to stabilize one of the many stationary

solutions possessed by the external cavity laser system. Stabilization of USS's is

discussed in Chapter 2 using the example of the inverted pendulum, and several

control protocols are reviewed there as well. I choose the control protocol for which

the feedback signal is identical in form to a single-pole high-pass filter, described by

Eq. 2.17. Restating the general form of that equation here, this technique prescribes

the continuous adjustment of an accessible system parameter p by bp (t) where bp (t)

evolves according to

d -= d (t) _ Wo6p W (7.1)- 6 p (t) - dt - w0 p() 71
dt d

where (t) is a measured dynamical variable of the system, y is the feedback gain,

and wo corresponds to the corner frequency of the filter. This method is well-suited

to high-speed operation, it can be implemented very easily, and has successfully

stabilized an USS of a chaotic electronic circuit [45]. It also has an advantage over

the derivative control technique (Eq. 2.16) in that it is not as susceptible to high-

frequency noise.

It is easy to understand the logic of this method. If the measured system variable

(t) is constant, as it must be for an unstable steady state, ( /t = 0 and thus 6p (t)

goes to zero. When the system begins to move off of the USS, the time derivative

of (t) becomes nonzero and thus the feedback grows. This idea can be expressed

in the frequency domain as well, and I motivate this approach by considering the

relationship between high-pass filter control and ETDAS, the continuous feedback

method for stabilizing unstable periodic orbits, described in Chapter 3.
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Figure 7.1: Transfer function of the high-pass filter. The corner frequency is the
point at which the response of the filter has fallen off by 3 dB. This is equivalent to
the ETDAS transfer function with the first notch at infinity.

To understand this relationship, recall the frequency-domain characteristics of

ETDAS as described by its transfer function T (f). This is described by Eq. 3.5 and

illustrated in Fig. 3.3. The first notch in the transfer function at a nonzero frequency

occurs at f* = 1/Tr where r is the period of the unstable periodic orbit. If this notch

were located at a very high frequency (much higher than any frequencies present in

the system), the effective transfer function would then appear as in Fig. 7.1, which is

equivalent to a high-pass fiter. This can be accomplished by taking the limit T -* 0

while letting R -+ 1. This relationship can be derived mathematically by first noting

that ETDAS may be expressed recursively [20], i.e.

p(t) -- Y - (1 - R) E k-1 (t- k-)
k=1

- -y[6(t)-6(t-r)]+R6p(t--r). (7.2)

The next step is to subtract 6p (t - r) from both sides of the equation and divide by
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Figure 7.2: Experimental layout for implementation of high-pass filter control in
the external cavity semiconductor laser system.

-r to obtain

p W)- p(t- r)= __ (t)- (t-r)] + 1 (R -l)p(t -r) (7.3)

Shifting time forward by r and simultaneously taking the limits r -- 0 and R -* 1

with wo = (R - 1) /,r held finite, Eq. 7.3 becomes

d t yd (t) + wo6p (t) (7.4)- ( dt- t = dt

This is identical to Eq. 7.1, and thus high-pass filter feedback control may be under-

stood as a limiting case of ETDAS.

One very desirable feature of high-pass filter control is that it extraordinarily

simple to implement experimentally. In this experiment, the measured system vari-

able is the laser intensity emerging from the semiconductor chip and the feedback
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is applied to the injection current. One configuration for this process is illustrated

in Fig. 7.2, where organization of the feedback loop is designed to minimize control

loop latency. The beam from the laser diode (LD) is collimated (CL), and sampled

by the beamsplitter (BS) that directs 30% of the incident power out of the aluminum

box through a glass plate. The beam passes through a neutral density filter (ND)

with an optical density of 0.8 which prevents damage to the detector, after which a

focussing lens (FL) directs the beam onto the New Focus 1537-LF photoreceiver. The

photocurrent is converted to a voltage by a transimpedance amplifier and ac-coupled,

all within the photoreceiver unit. This is the point at which the high-pass filtering

is performed. The voltage is then amplified (AMP), attenuated (ATT), or inverted

as desired before it is injected into the RF port of the bias-tee, thus feeding back to

the laser current. The amplifiers (B&H Electronics type AC512OHL) are inverting,

with a bandwidth from 2 kHz - 5 GHz and a gain of 20 dB each. The attenuators

(JFW Inc. type 50HF-SMA) have a bandwidth of dc - 18 GHz and a variety of fixed

values available (1 - 20 dB). The splitter (Mini-Circuits ZFRSC-42, bandwidth dc -

4.2 GHz) is used to sample the signal. All signals propagate through SMA connec-

tors and short lengths of RG-174 flexible coaxial cable not exceeding five inches. I

estimate that this feedback system has a total control loop latency of 3 - 4 ns, based

on propagation speeds in electronic components and the path length of the loop.

7.2 Experimental effects of high-pass filter feed-
back

As stated in the introduction to this chapter, I find that high-pass filter control in

this implementation is not successful at stabilizing an USS nor at suppressing power

dropout events. When control is turned on (by simply connecting the cable to the

bias-tee), the dropouts continue to occur at an equal or faster average rate and drop
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to approximately the same depth. The feedback does affect the system, however,

by changing the shape of individual power dropouts, illustrated in Fig. 7.3. Graph

(a) shows a typical dropout of the unperturbed system. Graphs (b)-(d) illustrate the

effects as the feedback gain is increased, going from a minimal change (b) to a ringing

effect (d). The ringing becomes stronger as the feedback increases, and eventually

goes into continuous oscillations at sufficiently high gains (e) (note the change in

scale). The laser parameters are: drive current 19 mA, relative threshold reduction

AC/C = 0.15, and P/P, = 1.46.

To calculate the feedback response as a function of the optical power reflected

from the beamsplitter, I account for the neutral density filter, conversion gain of

the photoreceiver, and the amplifiers and attenuators present in the loop. The most

convenient quantity to calculate is the voltage applied at the bias-tee as a function

of the optical power reflected from the beamsplitter. This avoids the complications

of frequency-dependent coupling of the applied voltage into the current, described in

the previous chapter. It is important to remember that fluctuations in the optical

power are the relevant quantities, since the high-pass filter action ignores changes

that are slower than the 10 kHz cutoff of the ac-coupled photodetector. With that

in mind, the conversion gains associated with the time series shown in Fig. 7.3 are

114, 181, 228, and 360 mV/mW for graphs (b), (c), (d), and (e), respectively, and

are assumed not to be frequency-dependent.

The sign of the gain in Fig. 7.3 is chosen such that decreasing optical power

results in increasing pump current. There is no a priori reason that this should be

the correct sign to use, however, and therefore I test the opposite sign as well. I find

that this case lengthens significantly the duration of the dropouts, suggesting that

this is indeed the wrong choice of sign. This behavior is illustrated in Fig. 7.4, where

graph (a) shows a single dropout of the unperturbed system, and graph (b) shows
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Figure 7.3: Experimental time series of laser intensity with high-pass filter feedback.
The shape of the dropout is dependent on the feedback gain.
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Figure 7.4: The effect of feedback with the wrong sign of the gain on power dropout
shape. The dropout when (b) feedback is applied has a much longer duration, com-
pared with the (a) unperturbed dropout.

the result when the feedback is applied. The magnitude of the conversion gain is 228

mV/mW, the drive current is 20 mA, AC/C = 0.16, and P/P 1 = 1.93.

I experimentally measure probability distributions q (t) of the interspike intervals

for the system, to quantify the effect of feedback on the long-term behavior of the

system. This data is presented in Fig. 7.5, where graph (a) shows 7 (t) for the

unperturbed system, and graphs (b) - (d) are with feedback, with the same gains as

the corresponding letters in Fig. 7.3. The graphs show that the feedback changes

n (t) little, only shifting the distribution somewhat toward shorter interspike intervals.

The mean time of the unperturbed system is 7.sH = 1050 ± 20 ns, and decreases to

7"11 = 888 ± 15 ns in graph (d), assuming only statistical errors. For this data set,

the drive current is 21 mA, AC/C = 0.15, and P/P 1 = 1.93.
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Figure 7.5: Experimentally measured probability distributions q (t) of the interspike
intervals when high-pass filter feedback is introduced. The unperturbed dynamics are
represented in graph (a).
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7.3 Discussion

To conclude this chapter, I consider possible reasons for the ineffectiveness of this

implementation of high-pass filter control and discuss improvements by which it may

be more effective. The high-speed, high-dimensional LFF dynamics are certainly

much more complex than those of previously controlled systems, and the stochastic

effects may also be a destabilizing influence. It is not surprising that these complica-

tions make control difficult, especially given the speed of the dynamics. However, it

is encouraging that the feedback scheme is capable of changing the dropout shapes,

suggesting that improved implementations may have more success. For example, it

is likely that latency remains a problem in the current implementation, despite my

efforts to minimize it. From the shape of the dropouts in Fig. 7.3, it appears that a

few nanoseconds elapse between the falling edge of the dropout and first visible sign

of the feedback being applied, which is consistent with the control loop latency. To

decrease the latency, it may be necessary to reconfignre the experiment, placing the

detection and feedback electronics inside a larger aluminum box to minimize the path

length. Ideally, the electronics could be amassed into a single custom-built design,

eliminating the need for multiple amplifiers and cable connections. Other improve-

ments may also enhance performance of the control. The frequency dependence of

the coupling of the feedback signal into the laser may be a source of problems. Taking

a lesson from the electronic implementation of ETDAS, an appropriately designed

predistortion filter could compensate for this effect. In addition, it may also be that

the fast pulsing dynamics need to be taken into account, perhaps carefully adjusting

the timing of the loop such that the feedback pulse arrives in conjunction with an

optical pulse in the cavity.

This chapter has shown the effects of high-pass filter control on the dynamics of
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an external cavity semiconductor laser. In the concluding chapter that follows, I will

review all the major results of this thesis, and consider future work to be done.
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Chapter 8

Conclusion and Future Directions

To draw this dissertation to a close, I reflect on how my research contributes to the

fields of physics and nonlinear dynamics, review the major results of this thesis, and

consider extensions of this project. The primary theme of this thesis is control of in-

stabilities and chaos in systems that display temporal instabilities on fast timescales.

My research encompasses two such systems, possessing instabilities among the fastest

that have been investigated experimentally in a nonlinear dynamics context to date.

My goals in this work are to better understand the dynamics of these systems, to

develop and demonstrate new control techniques that are suitable for application to

fast dynamics, and to increase the understanding of the practical issues involved in

such control.

This work grows from foundations in the fields of dynamical systems and control

theory, as discussed in the introductory chapters. The subfield of controlling chaos

became very visible and important in 1990 following the work of Ott, Grebogi, and

Yorke [8], who showed how chaotic systems may be controlled by taking advantage

of the unstable dynamics inherent to the system, such as unstable steady states and

unstable periodic orbits. In my introduction I illustrate this concept in the simplest

of nonlinear systems, a damped pendulum. In my consideration of different control

techniques, I review the Ott, Grebogi, and Yorke technique, as well as a variety

of other feedback algorithms that have been proposed and demonstrated in various

low-speed systems. I emphasize the issues that arise in controlling fast systems and

consider how existing control techniques may be adapted to address such concerns,

particularly those of latency through the control loop and accurate sampling of the
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system at discrete times. An important point to remember is that continuous control

algorithms minimize these difficulties and are therefore better suited for control in fast

systems. All the control techniques studied in this thesis are continuous in nature. I

also point out that open-loop control techniques do not suffer problems with latency

at all, and are thus good candidates for high-speed control applications as well.

Following this introductory material, I develop a new feedback control technique

for stabilizing unstable periodic orbits, ETDAS, which is an extension of a scheme

proposed by Pyragas [23]. It generates a feedback signal based on difference of the

current state of a dynamical variable of the chaotic system and an infinite series of

past values of that variable. The time domain characteristics of ETDAS and a linear

stability analysis technique give insight into the mechanisms of time-delay control. I

also examine ETDAS in the frequency domain and identify that its transfer function

has notches at integral multiples of the characteristic frequency of the orbit to be

controlled, a feature that allows the feedback to vanish when an unstable periodic

orbit is stabilized. Thus, ETDAS is a technique that is true to the Ott, Grebogi, and

Yorke concept of stabilizing unstable dynamics inherent to the system.

Turning to experimental considerations, I describe the necessary components for

a real implementation of ETDAS, noting that an all-optical version using the re-

flected field from a Fabry-Perot interferometer is possible. I then provide a detailed

description and layout of an electronic implementation that addresses practical con-

siderations such as latency and fidelity of signal reproduction, balanced with low cost

and ease of construction. In this version of ETDAS it is crucial to compensate for

frequency-dependent attenuation in the cable that produces the time delay, in order

to accurately reproduce the ETDAS form.

I then apply this form of ETDAS to a chaotic diode resonator circuit driven at

10.1 MHz, and obtain the important result of successful stabilization of period-1 and
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period-4 orbits. These controlled orbits are identified as unstable periodic orbits of

the unperturbed system by demonstrating that the feedback becomes very small when

the orbits are stabilized. Examination of first-return maps confirms this as well, as the

stabilized orbits lie on the attractor of the unperturbed system. In addition, ETDAS

is demonstrated to be superior to Pyragas's scheme in that it allows for stabilization of

orbits over a broader range of system parameters, including values of the bifurcation

parameter for which control was previously not attainable. Furthermore, it is more

effective in the presence of large control-loop latency, suggesting that ETDAS may

be a good technique in even faster systems for which significant latencies may be

unavoidable. These experimental results are in good agreement with theoretical

predictions.

With the conclusion of the investigation of ETDAS control of the diode resonator,

I next investigate the external cavity semiconductor laser system and the instability

of low-frequency fluctuations. New measurements are made of the probability dis-

tribution of interspike intervals to help understand the laser dynamics. This study

is valuable due to the currently incomplete understanding of the complex LFF be-

havior. For example, Sano [110] and van Tartwijk et al. [39] characterize LFF as

deterministic antimode dynamics, but this model offers little understanding of the

long-term behavior or the role of stochastic forces. I instead derive an approximate

closed-form theoretical expression for the probability distribution of interspike inter-

vals 77(t), based on a first-passage time analysis of the Henry and Kazarinov theory

[108]. This theory models the LFF dynamics as a stochastically-driven overdamped

particle in a well, where the well is formed by the maximum gain mode and a power

dropout occurs when the particle escapes over a potential barrier. The results pro-

vides reasonable agreement with experimental measurements in some cases, under

an interpretation that accounts empirically for a reinjection time following a dropout
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event. However, in other cases the theory is qualitatively incorrect, failing to predict

the appearance of structure in 77 (t) which may be evidence of additional deterministic

dynamics in the system.

Following the fundamental investigation of LFF, I apply control perturbations

to the system beginning with open-loop control in the form of a 19 MHz sinusoidal

modulation of the drive current. This represents an investigation of control in an

extremely complex, high-dimensional system, extending the current understanding

of controlling chaos. I discover that the power dropouts can be entrained to the drive

frequency in 1:1 and 1:2 ratios when the modulation amplitude is > 8% of the dc

injection current. This is a significant alteration of the dynamics, since the interspike

intervals are usually distributed randomly in time. Forcing the dropouts to become

regularly-spaced also reduces the low-frequency noise in the system, a potentially

important result for some applications.. In addition, I find that 77 (t) is very sensitive

to the presence of the 19 MHz perturbation even when it is too weak to entrain the

dropouts, which may be connected with stochastic resonance phenomena. In this

case, the interspike intervals are somewhat irregular, but only occur at intervals that

are integral multiples of the drive period. At higher drive frequencies, the distribution

7 (t) again shows that dropouts occur preferentially at times that are multiples of the

drive period, although no entrainment is found. The modulation also can induce new

dynamics in some cases, in the form of short, rapid bursts of dropouts. Curiously,

there is no apparent effect on 77 (t) if the frequency is set at the resonance frequency

of the external cavity.

My last experiment is a preliminary effort at applying high-pass filter feedback

control to the laser system as it undergoes LFF, in an attempt to stabilize one of

the stationary solutions of the system. This feedback method may be interpreted as

a limiting case of ETDAS. I use the optical power as the measured system variable,
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and injection current as the accessible control parameter. The feedback changes the

shape of the individual power dropouts but is unsuccessful at stabilizing the system.

The experiments described in this thesis lead the way to many further investiga-

tions. With the successful proof-of-principle demonstration of ETDAS, it remains to

be seen if the technique can stabilize orbits in laser systems. This experiment may

best be tried in a laser system other than one exhibiting LFF, where UPO's may

be more obviously present and noise not such an important factor. The all-optical

implementation of ETDAS has yet to be tried in an experimental system, although

it has been considered theoretically by other researchers [46, 47]. In further attempts

at applying feedback control to the LFF system, there are several ways to improve

the high-pass filter control, as described at the end of Chapter 7. These efforts

are focused primarily on technical improvements to the construction of the control

loop, decreasing its latency and accounting for frequency-dependent distortion of the

feedback signal.

There also remains a sizeable amount of work to be done in understanding the

LFF system, its dynamics, and its response to control perturbations. On the theo-

retical front, it is an open question if the first-passage time description of R (t) based

on the Henry and Kazarinov theory can be improved, perhaps by incorporating a

stochastic element to the reinjection process or constructing a different potential well

that may predict some of the structure in q (t) observed at high powers. Other work

to be done with this model is to find a way to incorporate the sinusoidal modulation,

to better understand the comblike probability distribution. In addition, the unex-

plained experimental results of this thesis may prompt further investigation, perhaps

leading to a better understanding of the system. The unexpected lack of effect due

to modulation at the cavity frequency remains to be explained. In addition, the

sensitive response of 7 (t) to even weak modulation at other frequencies may be of
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interest to the stochastic resonance community.
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Figure A.1: Schematic of the diode resonator and its model using ideal components.

Appendix A

The Diode Resonator

This Appendix contains the derivation of the circuit equations of the diode resonator

used in Chapter 4 (Eqs. 4.1 and 4.2). They are derived from a standard circuit

analysis in which the system is treated as a collection of ideal components, in a form

delineated by Newell et al. [156]. I also derive the dimensionless form of the equations

used in the numerical and theoretical computations. Finally, I will describe how I

determine the model parameters from the real system.
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A.1 Circuit model

The basic equations for the diode resonator can be obtained through standard circuit

analysis and the application of Kirchoff's Laws. The model treats the real circuit

as a collection of ideal components as shown schematically in Fig. A.1. The resistor

R8 and the inductor L account for the total reactance and inductance of the circuit,

respectively. The rectifier diode is modeled as the parallel combination of a nonlinear

resistor and two nonlinear capacitors Cd and Ct [157]. This model is well suited for

rectifier diodes, such as the type 1N4007 used in my resonator [158]. Other types of

diodes are more accurately described by different models [24, 28, 29, 30].

The voltage drops around the circuit lead to the equation

Vo(t) = L d I  +R, (A.1)
dt

where V0(t) = V0 sin(wt) is the sinusoidal drive voltage, I is the total current flowing

through the circuit, and Vd is the voltage drop across the diode. This gives the

differential equation for the current. To derive an equation for the diode voltage drop,

consider the currents Icd and Ict that flow through the parallel nonlinear capacitances

Cd and Ct, respectively. The sum ICd+Ict is equal to I-Id by conservation of current,

where Id is the portion of the total current flowing through the nonlinear resistor.

This leads to
dVd (I- Id)d- (Cd + Ct)" A2

An expression for Id can be found by treating it as an ideal diode whose voltage-

to-current characteristics is described by the Shockley formula

Id = 1,[exp(eVd/nkBT) - 1], (A.3)

where I, is the reverse-bias current, e/kBT is the thermal voltage, and n accounts

for carrier recombination in the depletion zone.
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Expressions for the capacitances Cd and Ct are given by the following equations.

The voltage-dependent capacitor Ct accounts for the junction capacitance; its form

is given by

{t Cb(1 - Vd/Vj) - m  Vd < Vj/2 I (A.4)
C Cb (b, + mVd/V) /b 2  Vd > Vj/2 (

where Cb is the zero-bias junction capacitance, Vj = 0.6 V is the junction potential,

m quantifies the variation of the doping concentration across the junction, and b,

(1 - m)/2 and b2 = 2 -(m+') ensures that Ct is continuous.

The second voltage-dependent capacitor Cd accounts for the diffusion capacitance

arising from the finite response time of carriers to a changing field. Its form is given

by

Cd = Co exp(eVd/nkT), (A.5)

where C, is the zero-bias diffusion capacitance.

A.1.1 Dimensionless form

The differential equations describing the diode resonator may be written as

dl i [Vd_ IR- , + Vo(t)], (A.6)
dt L

dVd I - Id

dt Cd + Ct"

It is convenient to convert these equations into dimensionless form, for ease in nu-

merical study. This form is given by

d - - + V1 sin(T), (A.7)

dT2
dV
d'T = G(I", V),

where

G(I, V) = I (e v- 1) 1ifV<
cl [eav + C2(1 - V)-m] 2' (A.8)
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G(I, V) = (eCI v - 1)_ if 12 1

cl [ecaV + C2 (b2~n I
These dimensionless expressions for the diode resonator are obtained by means of the

following transformations: I = (wL/Vj)I, V = Vd/V, V = Vo/Vj, a = eVj/nkT,

= wL/R., r = OIR. /Vj, cl = R./3wCo, c2 = Cb/Co, and T = wt.

A.2 Measurement of real circuit parameters

Valid parameter values for the circuit are required if the model is to accurately

characterize the dynamics of the system. I determine these values by measuring

several of the circuit characteristics. First, I remove the 1N4007 diode from the circuit

and measure its I-V curve. The Shockley formula (Eq. A.3) describes this curve, and

thus can be used to determine the parameters I, and n. I use a Marquardt-Levenberg

curve fitting algorithm (supplied with the SigmaPlot for Windows software) to find

the parameter values. Reasonable agreement between the measured and predicted

behavior is found with I = 8.8 nA and n = 1.79 . These values represent the best

fit to the forward-biased portion of the I-V curve. The junction voltage Vj = 0.6 V,

as measured from the I-V curve.

The ac characteristics of the diode resonator are determined by measuring its

response to a weak sinusoidal modulation with a dc offset. Specifically, I measure

I(t) when the resonator is driven by a voltage V,/(t) = Vd + 5V sinwt as a function of

w for -4 V< Vd < 0.5 V and 6V ! 890 [LV. The frequency response of the resonator

displays a resonance due to the combined action of the inductor, capacitors, and

resistors. I calculate this resonance curve by assuming a system response to the drive

of the form

1 , i ~ t 1 ' * w ( A .9
Vd = Vd° +  Vd e - , (A.9)
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I~~~~~ =l 0+1 eiw+ PeiwtI° +t + 1Iew
2 2

where the superscripts 0 and' denote a dc and ac component, respectively, and the *

indicates a complex conjugate. Inserting Eqs. A.9 into Eqs. A.6 and retaining only

the oscillatory terms of the form e-iwt, the resulting equations are

Vo = RI' - iwLI' +V, (A.10)
= I'

2 2

where x - e/nkT and C = Cd + Ct. These equations may be solved for I', yielding

the response function of the circuit

f= (V (xIsexV? - iwC) (A.11)

(1 + R~xle "V° - W2LC) - i (wRC + wLxIsexY) "

It can be seen from Eq. A.11 that the frequency response of the system will

display a resonance, and that the shape of the curve will depend on the dc value of

the drive because of the ex1v terms. I collect a family of curves at several dc voltages

(-4 V< Vd, < 0.5 V), and again use the curve-fitter to determine the remaining

parameter values. This task can be simplified somewhat by recognizing that the

e'v terms become very small if Vdc is large and negative. This also causes the

diffusion capacitance Cd to be very small, so that C can be approximated as the

junction capacitance Ct, thereby helping to isolate its component parameters Cb and

m. Similarly, Cd is large compared to Cb when Vd becomes positive, thus C. can be

isolated.

Despite these simplifications, the parameter fits change somewhat over the range

of Vd,. This may be a result of saturation of the inductor as the higher currents,

an effect not accounted for in this model. I therefore select from the range of fits

the parameters which yield the best agreement with the experimental bifurcation
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Physical parameters

1 8.8 nA
n 1.79
R, 245Q
L 25 IH
Vj 0.6 V
m 0.33
Co 0.2 pF
Cb 17 pF

Dimensionless values
a12.89
0 6.41
F 2.30 x 10- '
cl 0.02
C2 85

Table A.1: Parameters for the diode resonator model

diagram of the unperturbed diode resonator, particularly with regard to the location

of events such as bifurcations, periodic windows, and the onset of chaos. These best

overall values are listed in the table below.
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Appendix B

The Lang-Kobayashi Equations

This appendix contains the derivation of the Lang-Kobayashi equations [36] that I

use in Chapters 5 through 7. I begin by establishing the connection with semiclassi-

cal laser theory, deriving the wave equation from Maxwell's equations and explaining

the complications that make a quantum mechanical description of the semiconduc-

tor medium difficult. I then apply phenomenological considerations to derive rate

equations for the electric field and the carrier density. Finally, I show how the rate

equations can be expressed in a dimensionless form that is convenient for computa-

tional use.

There is currently no standard notation for these equations; indeed there is a

bewildering variety of different (but equivalent) forms and notations. I choose to

derive the version of the equations used by Mork et al. [159, 124] because this form

is the basis for the dimensionless equations studied by Alsing et. al. [135].

B.1 Derivation of the equations

B.1.1 Semiclassical foundations

The semiclassical semiconductor laser equations treat the electric field classically, and

therefore I begin with Maxwell's equations in a macroscopic medium [129], given in

MKS units as

Vx9 = at' (B.1)
aD

Vx-( = J+-O-, (B.2)

V.D = Pf, (B.3)
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V.B = 0, (B.4)

where 8 is the electric field, B is the magnetic induction, 7- is the magnetic field, J

is the density of free currents, D is the displacement, and pf is the density of free

charges. The fields £ and 7- propagating in a medium give rise to the displacement

and magnetic induction, and this interaction is described by the constitutive relations

(B.5, B.6) and Ohm's Law (B.7), given for a nonmagnetic dielectric medium as

D = 0 + P, (B.5)

B = 0H, (B.6)

S=Us£, (B.7)

where P is the induced electric polarization density, u- is the conductivity of the

medium, and Eo and po are the permittivity and permeability of free space, respec-

tively. The quantities Eo and po are related by E0/O0 = 1/c 2, where c is the speed of

light.

Manipulation of these equations leads to the wave equation by the following

process. I take the curl of Eq. B.1 and substitute using Eqs. B.2, B.6 to obtain

V xV x =o- = O a j+ - ) (B.8)

Next, I express J and D in terms of P and 8 using Eqs. B.5, B.7 to find

X V X 8= - 08 025 027

and the right hand side can be simplified with the vector relationship

V X V x S = V (V. 8) - V 2$. (B.10)

The V.8 term in Eq. B. 10 is taken to be zero, which assumes no free charges (pf = 0)

and neglects the dielectric discontinuities that do occur in many diode lasers. The
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wave equation is then

V2S aS 1 c2 C a2 (B.11)o C2 0t  c2 0_t2  0c 2

where the constants have been rewritten using eopo = 1/c2 .

In the usual semiclassical treatment, the polarization density 5O is calculated quan-

tum mechanically through its connection with the dipole-moment operator f by [160]

P° = Tr (45)) (B.12)

where i is the density-matrix operator and the sum is over -all energy states in the

medium. Using the dipole approximation, the evolution of the density operator is

described by [161]

p= -- + '5 ) + 'k7 (B. 13)

where ft/ is the unperturbed Hamiltonian of the semiconductor medium, - is the

decay operator that accounts for all decay mechanisms, and A takes into account

carrier generation in the active region due to external pumping.

This formalism is not generally used for the semiconductor laser, however, because

a realistic analysis is very complicated. The unperturbed Hamiltonian H requires

detailed knowledge of the band structure and density of states for the conduction and

valence bands. Furthermore, the intraband decay processes that must be included in

the decay operator ' are not well-understood [117]. Therefore, a phenomenological

approach is commonly used for the description of the semiconductor medium, and

has proven to be very successful. The main assumptions of this approach are that

the optical gain and the refractive index of the semiconductor medium vary linearly

with the carrier density. A variety of equivalent forms and notations have sprung up;

I follow the notation of Mork [159].
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B.1.2 Phenomenological description

I Fourier transform the wave equation B.11 to convert the time derivatives to prod-

ucts, using

E,(r) = j (r,t)e-tdt, (B.14)

P00P (r , t)=-tt (B. 15)

where r = (x, y, z). Next, a susceptibility X is defined that relates the complex mode

amplitudes E,,(r) and P,,(r) via

P.(r) = EoXw (r) E.(r), (B.16)

which assumes that the polarization adiabatically follows the electric field. For sim-

plicity, I assume the field propagates in a the z-direction and is linearly polarized

in the transverse (x, y) plane. Inserting Eqs. B.14 - B.16, the wave equation B.11

becomes

I V2 -W± 2Ew(r)] E(r) = 0, (B.17)

where I have defined

1 =+ X, (r) -i a r ) ,  (B.18)

which contains the interaction of the electric field with the semiconductor medium.

Next, I account for the transverse structure of the lasing mode as follows. Assume

that Eq. B.17 is separable, that is, E,(r) = E,(z) 0 (x, y), and furthermore that

¢o (x, y) is a fundamental single transverse mode that satisfies [130, 118]

+ y + -e(r) (x, y) =k 2 (z)o(Xy). (B.19)

Then, the equation for E, (z) is

[z 2 + k2 (z) E, (z)= 0, (B.20)
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using the normalization f f 0 o*dydx = 1, and introducing the complex longitudinal

wave number k (z).

For a Fabry-Perot laser, the wave number k is independent of z, and is taken to

have the form [130]

k(w, N) = -n' (w, N) + i- [g (w, N) - a], (B.21)
c 2

where N is the average carrier density of the active region, n' is the part of the

real refractive index, ai is the internal loss per unit length, and g is the modal gain

representing the difference of the stimulated emission and stimulated absorption per

unit length. The carrier density is a fundamental variable of the system; I will

derive its rate equation later. Eventually, I will perform a Taylor expansion of the

system about a stationary value, and therefore will require the partial derivatives of

k (w, N). Defining the effective group refractive index ng = n' + w (n'/Ow) and the

group velocity vg = c/ng, the derivatives are

Ok = l+_i l g (.22)

Ow V9  20w'
k = i2 (1 +ia) W (B.23)

The term a in Eq. B.23 is the linewidth enhancement factor [134]. It can be expressed

as

2w (On'/Og)
a 2c (Og/ON)' (B.24)

- (On'ON) (B.25)

(an"/ON)'

where the quantities n' and n" in Eq. B.25 are the real and imaginary parts of the

complex refractive index n, =- n' - in , with k - wnc/c. Nonzero values of a lead to

the phase-amplitude coupling that is characteristic of semiconductor laser dynamics.
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Figure B.1: Schematic of a semiconductor laser with external feedback. The rec-
tangle between z -- -t and z -- 0 represents a Fabry-Perot laser diode with facet
reflectivities of r, and r2. The external cavity is formed by a flat mirror of reflectiv-
ity r3 located at z =- L. Effective reflectivities rR and rL are defined for right and
leftgoing fields E+ and E-.

B.1.3 Rate equation for electric field

I now have derived a wave equation (B.20) and a complex wavevector k (B.21) that

accounts for the interaction of the electric field with the semiconductor medium.

They can used to obtain a rate equation for the slowly-varying amplitude of the

electric field. The process will be to determine boundary conditions in terms of

effective reflectivities, which give a condition for oscillation. I will then expand one

of these conditions about a fixed operating point (w. N,), and transform the resulting

equation into a dynamic equation for the slowly-varying complex envelope function

of the electric field. An equation for the carrier density is also derived.

The first step is to decompose E,, (z) = E + (z) + E,,- (z), the right and left trav-

elling components illustrated in Fig. B.1. The boundary condition at the left facet

(z = -f) is simply that E,+ (-t) = rE,,- (-t), which may also be expressed at a
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reference plane just inside the right facet at z = 0 (the dotted line in the figure).

This transformed boundary condition is derived in Ref. [130] as

E+ (0) = rL (w, N) E, (0). (B.26)

where the effective reflectivity of the leftgoing field rL (w, N) is

rL (w, N) = r, exp [-2ik (w, N) f]. (B.27)

Similarly,

E. (0) = rR (w) E,[ (0), (B.28)

where rR (w) is the effective reflectivity of the rightgoing field. The Lang-Kobayashi

model assumes weak feedback, meaning that only one reflection from the external

mirror at z = L contributes significantly. This is reasonable if r3 is small or if the

right facet has an antireflection coating. The form of rR in such circumstances is

[162, 163]

rR (w) = r2 + (1 - r2) r3e- wr, (B.29)

where -r is the roundtrip time in the external cavity, given by 2L/c. Note that r3

could be described in a frequency dependent manner if the distant reflector were a

grating.

The boundary conditions (B.26, B.28) provide a condition for sustained laser

oscillations. Assuming operation at some stationary solution (w., N,) yields

rL (ws, Ns) rR (w) = 1. (B.30a)

By eliminating the external cavity (equivalent to setting rR = r 2), this equation de-

termines the lasing frequencies supported by the solitary laser cavity. The imaginary

part of the exponential in rL must be a multiple of 21r. leading to
irc

M= M 7 (B.31)n (w t) i'

178



where m is an integer and wm is the mth longitudinal mode of the solitary laser

cavity.

To obtain a rate equation for the field, I again use Eq. B.26, but now perform a

Taylor expansion of the exponential for (w, N) near (w,, N). Rewriting Eq. B.26 as
1 +

rL (w, N) E (0) = E. (0), (B.32)

the effective reflectivity is expanded as

1 _1

N -- exp [2ik (w, N) f],rL (w, N) rl

11 -- exp [2ik (w,, N,) 1 + 2iAkf],
rl

1 [1 + 2iAkf] exp [2ik (w,, N) f]. (B.33)
ri

Recalling Eqs. B.21 - B.23,

2Akl = 21 [(- Ok (N N .Okl

= T [1i-Ga) (w-wT)in (li+Y)GN(N-Ns)1, (B.34)

where the roundtrip time inside the solitary laser cavity Tin =, 2e/vg and the gain per

unit time G = vgg, with partial derivatives G , = &G/Ow and GN = OG/ON. Upon

insertion of Eqs. B.33, B.34 into Eq. B.32, I find

iwE + (0) - iw8E+ (0) = 1 CGN(N - N,)E + (0) + fD [rLEJ (0) - E+ (0)], (B.35)

where C - (1 + ia) / (1 ± i!G,) and fD = 1/ [rin (1 + i1G,)]. The terms C, GN,

fD, and rL are all evaluated at (w", N,). To convert Eq. B.35 into a rate equation, I

introduce the complex envelope functions of the electric field at the reference plane,

given as

A±(t)e 'wt -E 1 / e (0) (B.36)
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These functions are related to the real electric fields by

£ (0, t) = A±(t)e'wt + complex conjugate. (B.37)

Multiplying Eq. B.35 by exp (iwt), the first term on the right-hand side may be

rewritten

iwE + (0) ew= - (E+ (0) e ,ut) (B.38)

so that when I integrate and apply Eq. B.36 the dynamic equation

d (t) - CGN(N - NS)A + (t) + fD [rLA- (t) - A+ (t)] (B.39)

is obtained.

I next relate A- (t) to A+ (t), which is given as the convolution

A-(t) = (t)9A + (t)

00

= oJ(t)A+(t-t')dt', (B.40)

-00

where the response function o(t)e--t is given by

P(te = 2i rR (w)ewtdio. (B.41)

-00

From Eqs. B.40, B.41 I find

A- (t) = r2A + (t) + r 3 (1 - r2) e--*A+ (t - T) . (B.42)

I insert this formula into Eq. B.39 and choose the solitary laser threshold conditions

(Wo, Nth) as the stationary point (w,, N). For the solitary laser, rL = 1/r 2 and G" is

assumed to be zero, corresponding to the laser oscillating near the gain peak. The

rate equation thus becomes

d 1
-A + (t) = (1 + ia) GN(N - Nth)A + (t) + -e- °tA+ (t - r), (B.43)
dt 2Ti
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where the n is the relative feedback level, given as

K r3 (1-r 2) (B.44)
r2

To express the electric field in a form that will be convenient for deriving the car-

rier rate equation, A+(t) is converted to a new complex field variable E(t), normalized

such that total photon number in the active region I(t) is given by

1(t) = V IE(t)12, (B.45)

where V is the volume of the active region. The final rate equation for the complex

field variable is then

E (t) (1 + ia) GN(N - Nth)E (t) + K--e-woE (t - -). (B.46)
dt 2 =- Tin

B.1.4 Rate equation for carrier density

To complete the rate equation description of the semiconductor laser, an equation

for the carrier density N is required. The usual expression for N is given by [131]

d N(t) = J - R(N) - (B.47)

where J represents the carrier density rate injected into the active region by the

pumping current, and R(N) gives the rate of spontaneous recombinations per second.

Agrawal [117] states that a "reasonably suitable form" for R(N) is given by R(N) =

AN+BN 2 +CN 3, which incorporates spontaneous radiative recombination effects as

well as Auger recombination. A simpler form for R(N) is used in the Lang-Kobayashi

equations,

R(N) = N (B.48)-1s

where -r is the carrier lifetime. The gain rate G(w., N) in Eq. B.50 is expressed by

Mork [124] as G(N) = GN(N - N), where GN = (OG/ON)th is the differential gain
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Parameter Symbol Value
Photon lifetime TP 4.5 ps
Carrier lifetime 700 ps
Internal cavity roundtrip time Tin 3.9 ps
External cavity roundtrip time r 4.7 ns
Linewidth enhancment parameter a 5
Differential gain GN 2.6 x 10-6 cm 3/s
Threshold carrier density Nth 1.5 x 1018 cm -

Table B.1: Parameter values for the Lang-Kobayashi equations

evaluated for the carrier density at solitary laser threshold, and N is a constant (usu-

ally the carrier density at transparency). Again assuming operation near threshold,

it is convenient to write G(N) as

G(N) = G(Nth) + GN(N - Nth) (B.49)
1

- + GN(N - Nth)
TP

where rp is the photon lifetime. By substituting Eqs. B.48, B.49 for R(N) and G(N)

and applying Eq. B.45, I obtain the carrier density rate equation

dN )=j N [1 1
N(t) = J - - + GN(N -Nth) EI 2 . (B.50)

dt Ts TP

Equations B.46 and B.50 together are known as the Lang-Kobayashi equations.

In numerical simulations, I use parameter values as listed in Table B.1. These

values are based on papers by Simpson et al. [35, 164], who have studied SDL-5301-

G1 lasers. These lasers have essentially the same characteristics as the SDL-5401-G1

model I use in the experiments of this thesis.

B.2 Dimensionless form

The Lang-Kobayashi equations in the regime of LFF are "stiff," owing to the large-

amplitude picosecond pulses the system exhibits. It is therefore advantageous to use
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a dimensionless form for computational work. Alsing et al. [135] have derived such a

form, which I have used for my numerical results in Chapters 5 through 7. I review

here the transformations by which these equations are obtained.

To transform Equations B.46 and B.50 I use the new dimensionless variables

F = V-- E (B.51)

Z -=(2r- -)(N -Nt,), (B.52)2

s t (B.53)
rp

and new parameters

TpGNNth (J\
2 th--1 (B.54)

Jth Nth, (B.55)
Ts1

77 M -a, (B.56)
Tin

T L, (B.57)
-rp
T (B.58)
TP

Q WoT-p. (B.59)

In terms of these new dimensionless quantities, the Lang-Kobayashi equations are

expressed as

= (1 + i&) ZY + re-n°Y (s - 0), (B.60)
ds

T dZ  = P-Z-(1+2Z) IYj 2  (B.61)ds

with Y becoming the dimensionless electric field and Z representing the carrier num-

ber deviation from the threshold value.
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Appendix C

The Henry and Kazarinov Theory and
First-Passage Time Problems

This appendix contains mathematical details of the first-passage time problem, fol-

lowing the development given in Ref. [146]. I also present the derivation of the

approximate solution for the mean interspike intervals and probability distribution,

based on Henry and Kazarinov's theory as discussed in Chapter 5.

C.1 The first-passage time problem

The first-passage time (FPT) problem is one of a special class of problems relating to

systems in which the underlying processes can be described in stochastic terms (e.g.

spontaneous emission). The usual formulation of the problem involves establishing

two possible regions in which a random variable may reside. The FPT is defined as

the time T that elapses before the variable is driven from its initial region to the other

for the first time. The dynamics of such a system is often expressed by a Langevin

force equation
dX (t)I

dt a (X,t) + d2 (X,t) f (t), (C.1)

where X (t) is the random variable, a is called the drift function, and d is called the

diffusion function. The term f (t) is taken to be a Gaussian white-noise process. It

is well-established (see Refs. [165, 166, 167], for example) that the density function

P (n, t; n') of the random variable X (t) evolves according to the forward Fokker-

Planck equation

S1 02

5i (n,t;n') -0" [a (X, t) P (n, t; n')]+ 2 N2 [d (Xt)P(n, t; n')] , (C.2)
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assuming that f (t) obeys

(f(t)) = 0, (C.3)

(f (t) f (u)) = 6 (t -u). (C.4)

The probability density P (n, t; n') is defined such that P (n, t; n') dn is the proba-

bility that X (t) lies between n and n + dn, given that the initial value of X (0) = n'.

The density P (n, t; n') is related to the FPT probability density as follows: let

P1 (n', t) be the probability that X is still in its initial region at time t, assuming

n/ was the initial location. The FPT probability density C (n', t) is then defined such

that C (n', t) dt is the probability that T lies between t and t + dt, and is related to

P1 (n',t) by

(n/,t) = dP1 (n',t) (C.5)
dt

It is possible in theory to determine the FPT probability from this equation by solving

Eq. C.2. However, this may be a very difficult task, and it is more convenient to

seek a solution by a slightly different approach.

I consider instead the integral FPT probability density 4 (n', t), which describes

the likelihood that the FPT is less than t given the usual initial condition. To be

definite, let X be constrained to lie between 0 and A, where the first passage occurs

when X reaches A. I then define a transition probability W (n, dt; n') that describes

the probability that the system moves from n' to between n and n + dn in a time

dt. The position n + dn is then taken as a new initial condition. This may be

mathematically expressed as

4(n',t +dt) = j W(n, dt;n') (n,t)dn. (C.6)

Next, 4 (n, t) is expanded about n'

(n1 2 (n, t) n,)2+'(nt) "4_(n',t)+ (n- On 2  (n-n + (C.7)
On' 2 "1"
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and inserted into Eq. C.6 to find

(n',t +dt) _ (n',t)f W(n, dt;n')Wdn

* on (n', t) (n - n') W (n, dt; n') dn

2 an2 (n I (na2o n')2 W (n, dt; n') dn + "" (C.8)

Since f W (n', dt; n) dn = 1, I subtract 0 (n', t) from Eq. C.8, divide by dt, and take

the limit as dt -+ 0 to find

64' (n', t) = 6n O' (n', t) a2 (n') a20 (n', t)
at n ' 2 an2 (C.9)

where aj (n') is the ,,jth infinitesimal transition moment" defined as

aj(n') = lim f (n - n')j W (n, dt; n) dn. (C.10)dt, - -- W n0tn)d.(.0

Boundary conditions are then established for Eq. C.9. First, 0 (A, t) = 1 since the

FPT occurs if n' = A. Also, 64' (0, t) /an' = 0 if the system cannot venture beyond

n < 0 (it is a "reflecting barrier" [146]).

The next step in the derivation is to define the jth moment of the first-passage

time starting from n' as

pj (n') = tj (n',t) d. (C.11)

One particularly useful feature of the moments of the FPT is that they are related

recursively. To derive the equations that relate them, differentiate Eq. C.9 with

respect to time, multiply by ti, and change the order of differentiations to find

tj 2 a(n',t) =__(n) ' t (n', t) a2 (n') a2 tja4  (n', t)
9t2 ') l n-' t, 2t + - -n2 t at I (C.12)

which upon integration over all time yields

a2 (n') a2 11 (n') ± a (') 6lu1 (n') -1, (C.13)
2 an12  on'

a 2 (n') a2s j (n') + a, (n') OluL () = j/ij' ('), (C.14)
2 On,2  On'

186



where Eq. C.14 is valid for j > 2. These relationships are used to derive an ap-

proximate analytical result for the system described by the Henry and Kazarinov

theory.

C.2 Approximate solution for Henry and Kazari-
nov model

To find an approximate solution for the FPT probability distribution for the Henry

and Kazarinov model will require two steps. I first make a series of approximations

to solve Eq. C.13, deriving an expression for the mean FPT. Subsequently, I use the

recursive relationship to deduce the form of the probability distribution for the FPT.

To begin, I restate the Langevin force equation derived by Henry and Kazarinov

(Eq. 5.27)
aU

i= --- + F (t), (C.15)
On

where n represents fluctuations in the carrier density away from the dominant mode,

and U (n) and F (t) are described by

U(n) = - ( n, (C.16)

(F (t) F (t')) = 2D6 (t - t'). (C.17)

The barrier of the potential function U (n) is located at no, at a height of "yno/6.

The theoretical form of D is given by Eq. 5.30, but can also be estimated from

experimental data. To formulate the FPT problem, it is assumed that the system

begins in the potential well at n = 0 and a power dropout occurs when the system is

forced past the barrier at no.

For this system, the aj coefficients given by Eq. C.10 are simply a, (n) -

-OU/On = A, and a 2 (n) = 2D (see Ref. [146], p. 374), where I have now dropped

the prime from n. The coefficient a 2 is a constant and does not depend on n. The
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calculation of the mean FPT begins by noting that the first moment of the integral

first passage time , is exactly the average first passage time (T). Introducing the

new variable v - 0 (T)/On , Eq. C.13 leads to

Ov A 1 (C.18)
On + -D' D1D

which is solved using an integrating factor

0 (n) = exp nA()dm] = exp [-U()] (C.19)

Here, m is merely a dummy variable for integration. Using Eq. C.19, the integral

expression for v (n) is

v (n) = D exp jn [U( dm, (C.20)
D 00ex

leading to

(T(n)) =dmexp [U5T) dm'exp [U()] +C2. (C.21)(Tn}-D fo f-00 D

To solve for the constant C2, I use the condition that the FPT must be zero if the

system is already at the barrier, i.e. T (no) = 0. With this condition, Eq. C.21

becomes

fI 0 [Um)1 [ , [U(m')l (C.22)

(T (n)) n dmexpdmexp [ D D

with the implicit assumption that n < no. I assume in the rest of this derivation

that the initial condition for n is that it starts at the bottom of the potential well at

n=0.

To solve Eq. C.22, I now begin making suitable approximations to its integrals.

First, consider the integral f' din' exp [-U (m') ID]. The exponential is largest near

n = 0, and therefore I Taylor expand the potential about the origin to simplify the
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exponent, finding

U n ()+n1U +1 n2 02U + n3)='n 2, (C.23)

where the derivatives are evaluated at the origin. If U (no) /D - -n 2/2D > 1, the

function inside the integral will have fallen to zero well before the barrier is reached,

so the integral will remain nearly constant for n > V/2-D/ 1 .

I now consider the remaining integral in Eq. C.22, f, dm exp [U (m) /D]. The

exponential in this integral dominates when n no and n < -no. However, it is

multiplied by the previous integral, which is approximately constant near n = no

but is essentially zero at n < -no. It is therefore permissible to perform a Taylor

expansion of the potential about the peak of the barrier, resulting in
UU (n - no) 2 192U

U(n) = U (no) + (n - no) - + 2! On 2 + 0 (n 3

, 7n o  -y (n - no) 2  (C.24)
6D 2D

With these approximations, Eq. C.22 can be rewritten as

(T (n))= - ndmexp exp -y(m-n o)2  dm'exp -,

[1 [D 2D _o d ex[2D1
(C.25)

where I have changed the upper limit of the final integral from m to co, which is

reasonable since the value of the integral is nearly constant over the region where

exp [--y (m - no) 2 /2D] is significant. The resulting definite integral has a good

closed-form solution f dm' exp [-ym' 2/2D] - rD/y, and thus the expression

for (T (n)) is

(T (n)) - exp dmexp [y(m- no)2 (C.26)

7 D D n I 2D I

The remaining integral can be solved approximately by demanding that the ini-

tial position of the system is far from the barrier at no relative to -y/2D, that is,
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m < no - V/2-D/7. Then the integral becomes independent of m, and I change

the limits so that fn' dm _ f -- din. This Gaussian integral has an exaxt closed-

form solution, 1 _0 dm exp [-y (m - n)2 /2D ] = /-7rD/2y, and the approximate

analytical solution for the average FPT is

(T (n))_ - r exp [-D ], (C.27)

which is the form given in Eq. 5.33. I emphasize that this solution is only valid if

the system is initially far from the barrier. This will be true if the initial location is

at the bottom of the well (n = 0) and the diffusion coefficient D is small.

I use Eq. C.27 in conjunction with Eq. C.14 for the higher-order moments of the

integral FPT to determine the form of the full FPT probability distribution. Recall

that the higher-order moments obey

D - + A = -j, (C.28)

On2  On

which is valid for j > 2. However, Eq. C.27 shows that IL = (T) is approximately

constant. Therefore, the higher-order moments can be found using the same analysis

by which I determined the mean time, with the result that each successive moment

pzj depends on the previous one with a factor of j (T), giving

A'2 = 2(T) exp [UD]=2(T) 2 ,

P3 = 3.2(T 7r exp[U ] 3! (T)3

1j = j!(T)j . (C.29)

The moments given by Eq. C.29 are of the exact form that is expected for

an exponentially decaying FPT probability distribution ((n, t). Assuming proper

normalization, this form must be

W(t) = -yexp (- ), (C.30)
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which has moments that can be calculated using integration by parts as

I.j = j! (T)i, (C.31)

and this is the same as Eq. C.29.

To summarize the analytical results, the mean first passage time (T) is approxi-

mately constant of n, and the FPT probability distribution ( (t) is simply a decaying

exponential that depends only on (T). The forms of these solutions are

(T) _ exp D (C.32)

1 ( _t)
M(t) - (T)exp (T) (C.33)

which are valid only if n, > V'2D-y assuming that the system starts near the

bottom of the potential well at n = 0.
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